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Preface 

The proceedings of the Third Conference on Sonic Boom Reskarch, 
held at NASA Headquarters, Washington, D.C., on October 29 and 30, 
1970, are reported in this NASA Special Publication. This conference 
was organized in the NASA Headquarters Office of Advanced Research 
and Technology and was attended by 150 scientists and engineers. It 
was, in essence, a follow-on meeting to the second sonic boom conference 
held on May 9 and 10, 1968, at NASA Headquarters, the proceedings of 
which are reported in NASA SP-180. 

The objectives of this conference, as was the case in the second 
conference, were to evaluate the current status of the NASA-sponsored 
university and industry programs on sonic boom research, to review the 
current research programs at the NASA centers, to determine those 
areas of sonic boom research that are critical and need to be emphasized 
from the standpoint of commercial supersonic and hypersonic transport 
operation, and to determine which, if any, of the various avenues of 
research appear to be the most promising with regard to the prediction 
of sonic boom generation and propagation and the reduction of sonic 
boom overpressure. The human response problem was not covered in 
this conference. The structural response problem was covered to a 
very limited extent. 

The first-day sessions of the conference were devoted to the presenta- 
tion of the invited papers covering the status of research on the prediction 
of sonic boom generation and propagation. Dr. Antonio Ferri of New 
York University and Mr. I. Edward Garrick of NASA Langley Research 
Center sewed as chairmen of these sessions. The morning session of 
the second day was devoted to the presentation of the invited papers 
covering the status of research on aircraft configurations and methods 
for the minimization of sonic boom. Dr. Morton Friedman ofColumbia 
University served as chairman of this session. The afternoon session of 
the second day was highlighted by panel discussions that summarized 
the progress and overall status of sonic boom research, determined those 
areas of research that demand more emphasis, and recommended direc- 
tions for future research. Mr. Harvard Lomax of NASA Ames Research 
Center served as chairman of the panel and open discussion session. 

A significant aspect of the conference was that most of the 29 papers 
presented reported new and important results. Reported progress ranged 

m 
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from fairly complete work on the turbulent distortion of sonic boom of 
hypersonic transports, space shuttles, and orbiters, and also from 
improved theories for predicting the sonic boom more accurately in 
critical cases for current transport to criticisms and suggested improve- 
ments in wind-tunnel techniques. In the area of boom minimization, the 
NASA program has utilized the combined talents of Messrs. E. McLean, 
H. L. Runyan, and H. R. Henderson at NASA Langley Research Center; 
Dr. W. D. Hayes at Princeton University; Drs. R. Seebass and A. R. 
George at Cornell University; and Dr. A. Ferri at New York University to 
determine optimum equivalent bodies of revolution that minimize the 
overprwsure, shock pressure rise, and impulse for given aircraft weight, 
length, Mach number, and altitude at operation. Simultaneously, research 
efforts of NASA and those of Dr. A. Ferri at New York University have 
provided indications of how real aircraft can be designed to provide 
values approaching these optimums. At the end of the meeting, the panel 
recommended continued and even expanded efforts in most areas of sonic 
boom research. Also, from these recommendations, it is apparent what 
the very minimum research program must be during this time of 
economic constraints. 

Planning of the future sonic boom research program must take into 
account the fact that under the restrictions of the proposed Civil Aircraft 
Sonic Boom rule (14 CFR Part 91), the operation of commercial transport 
in any way that would cause sonic boom to reach the surface of the United 
States would be prohibited. Within the constraints of this limitation, 
there are three principal unknowns that must be determined: (1) the 
magnitude of the superboom that occurs during the initial climb and ac- 
celeration to cruise, (2) the feasibility of ferrying aircraft at slightly 
supersonic speeds over h n d  areas as allowed by the proposed rule, and 
(3) the statistical spread of overpressures across the sonic boom corridor. 
In addition, and even more important, is the issue of what can be ac- 
complished in minimizing the impact of the sonic boom. This issue, 
incidentally, is not within the context of the proposed rule but is related 
to the development of later-generation SST aircraft with acceptable 
sonic boom characteristics for normal flight operation over land. 

Solutions to the first two issues are relevant to the impact of the sonic 
boom on commercial offshore installations, maritime transportation, and 
offshore recreational environment for pleasure boating. The solution 
to the third issue is relevant to the economic aspects of the aircraft 
operation. For example, when an aircraft is in straight and level flight at  
a given altitude and at  a speed supersonic relative to the air at  that 
altitude but subsonic to the air at  the ground, there is no sonic boom at 
the ground. Because supersonic transports will have to be operated over 
land and one of their attractions is greatly increased speed over water 
routes, there is considerable interest in the possibility of overland opera- 
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tion at low supersonic speeds with increased utilization offsetting 
increased operating costs (W mph versus 600 mph for current subsonic 
jets). 

The determination of whether such aircraft flight operation will be 
feasible depends to a large extent on the likelihood of a superboom 
occurring at  the ground and the magnitude of the overpressure at  the 
ground when it happens. 

Development of the capabilities required to provide solutions to the 
first two issues listed above will require the scientists to fornlulate 
techniques that will predict pressure levels at  a caustic and also deter- 
mine how these pressure levels are affected by topographical sirfaces. 

At this meeting, substantial progress was reported on the development 
of techniques for the prediction of pressure levels near a caustic. Dr. 
W. D. Hayes of Princeton University has shown that the caustic phenom- 
enon is described by a simple variant of the transonic flow equation. 
Dr. R. Seebass of Cornell University was able to give a formal analytical 
solution to this equation for a simple incoming signal with a finite rise 
time. Also, Drs. Seebass and Murman of Cornell University have suc- 
cessfully extended the latter’s technique for transonic flows to the 
calculation of solutions to the caustic problem. Drs. Gardner and Hayes 
of Princeton University are developing a shock-fitting numerical scheme 
that will provide refined answers. These results are in their preliminary 
stage; planned future research that was endorsed by the conference 
panel will be directed at understanding and extending these results and 
procedures to obtain reliable estimates of the magnitude of superbooms 
under various environmental conditions. 

The NASA Langley Research Center has recently obtained sonic 
boom measurements from flight experiments to define the sonic boom 
pressure field at the shock wave extremity or caustic. These results 
are reported in these proceedings. Caustic signatures resulting in over- 
pressure enhancement were observed at the shock wave extremities. 
The highest measured levels are on the order of three times the N-wave 
overpressures related to operations at higher supersonic Mach numbers. 

Another theoretical problem area, which had been previously identified 
for practical considerations and importance and the research progress 
of which was discussed at this conference, is the effect of turbulence. 
Drs. George and Plotkin of Cornell University carried out calculations 
on the relationship between shock thickness and its turbulent field. 
They showed that there is an effective dissipation of energy due to 

Whenever an envelope of sound rays intersects the ground, magnified overpressures 
called superbooms occur. 

A caustic is formed whenever successively emitted sound rays have an envelope; this 
envelope is a caustic surface. Linear accelerations, turns, and pushovers cause the rays 
to have an envelope. 
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scattering, substantiating earlier research. George and Plotkin also 
provided a detailed picture of possible N-wave distortions including 
shock thickening. 

I t  was concluded at the meeting that while theory has advanced to the 
point where the effects of turbulence are understood in a qualitative 
way, there is still much to be done to make quantitative predictions of 
turbulence effects a routine matter. For example, one of the serious 
questions that has arisen is the magnitude of turbulent distortion near 
the edges of the boom corridor. It has been suggested that the over- 
pressure there could exceed its nominal value by a factor of 2; 1 time 
in 500.- It will have to be determined whether or not such variations 
occur ind the extent to which they occur by utilizing the theories of 
turbulent distortion and by careful flight-test experiments conducted 
under known meteorological conditions. 

During the past two years, significant progress has been made in de- 
veloping a sophisticated analysis of nonlinear effects on sonic boom as 
reported in Dr. Landahl’s paper. This method of analysis provides an ex- 
cellent means for assessing the accuracy of first-order theory, which is 
commonly used to approximate the flow field within a distance of a few 
body lengths. The second-order solution developed by Dr. Landahl, how- 
ever, allows one to get within a distance from the body of one body length, 
which could be very important in accurately defining the Whitham F- 
function at Mach numbers of 3 and higher. Thus, although the usual 
method of predicting the far field and the related shocks by employing 
the Whitham F-function would normally be adequate for the very 
slender configurations at moderate Mach numbers, the F-function will 
be different from that derived by the nonlinear theory by terms that 
are of second order in equivalent body thickness ratio. To obtain accurate 
sonic boom calculations for complex configurations at high Mach 
numbers, there is a need for a better description of the near field than 
that provided by linearized theory. 

Because most wind-tunnel experiments provide near-field data that 
are then extrapolated into the far field through the F-function approach, 
it is especially important from the theoretical point of view to define 
the near field accurately. The influence of configuration asymmetries on 
the shocks and on the signatures is not accounted for properly by the 
usual experimental techniques employed. Hence, the theoretical non- 
linear analysis can be used to calculate corrections for near-field effects 
of wind-tunnel experiments that are directed at determining the Whitham 
F-function from measurements of the flow field near the body. 

Another use for the nonlinear method is for the development of wind- 
tunnel correction formulas that must account for nonuniformities in the 
flow such as  flow angularity, disturbances from model support, and local 
flow separations due to the low Reynolds number of the tests. Drs. Fern 
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and Landahl discussed in their papers the fact that nonuniformities 
present in all wind tunnels can introduce errors that are important for 
the sonic boom measurements when the intensity level of the boom to be 
measured is small. Dr. Ferri emphasized the fact that if experimental 
techniques are to be utilized, the importance of such errors should be 
recognized and evaluated carefully in such tests. Dr. Landahl further 
emphasized the point that, analytically, it is simple to correct for linear 
effects, but for high Mach numbers, the nonlinear effects of flow nonuni- 
formity become important and can be calculated approximately frcun his 
second-order theory. 

Significant progress has been made in the area of sonic boom reduction 
during the last several years. Although it is not yet certain thaf major 
reductions in sonic boom overpressure can be achieved by practical 
modifications of aerodynamic configurations such as changes in sweep, 
dihedral, planform, redistribution of lift, etc., recent theoretical and 
experimental research does indicate that substantial reductions in over- 
pressure can be obtained by modifying some of these aerodynamic 
parameters. The conclusions have been reached and accepted by several 
research groups. 

During the meeting, Dr. A. Ferri presented some results of his in- 
vestigations of the lower limits of sonic boom signatures that can be 
obtained with practical airplanes. Drs. W. D. Hayes and Weiskopf 
presented the optimum aircraft shape if the bangs of the boom (shock 
waves) are to be avoided. This result generalized early research by 
Drs. Seebass and George to include the beneficial effects of the air- 
craft's failure. 

It was concluded at the meeting that progress has been so substantial 
that it is no longer possible to rule out a domestic version of the super- 
sonic transport. Instead, the more effort that is put into the sonic boom 
minimization problem, the more such a transport appears feasible. 
It is imperative that work on sonic boom minimization continue. 

The panel agreed that since the weight of the airplane is an important 
parameter, some effort should be placed on an investigation of' possible 
changes: reduction of fuel consumption, type of engine fuel used, and 
structural weight. When this information becomes available, it will be 
possible then to determine the direction that should be taken and the 
potential possibilities that are available to the next generation'pf super- 
sonic airplanes. 

Some discussion at the   nee ti rig was directed to the feasibility of the 
hypersonic aircraft and its associated sonic boom level. However, to be 
practical, the hypersonic aircraft must have a long range. If it is to use 
that range effectively, it must have acceptable sonic boom character- 
istics. Thus, greater emphasis is needed on sonic boom associated with 
hypersonic transports. 
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Finally, an assessment of the overall status of sonic boom research 
covered during this meeting has indicated that significant progress has 
been made in our understanding and analysis of the following problem 
areas related to the prediction of the generation and propagation of 
sonic boom through real, stratified atmospheres. Also, substantial 
progress has been made in determining the optimum configurations that 
provide minimum sonic boom signatures. These lower bound signatures 
have been analytically related to real aircraft with significant reductions 
in overpressure. Experimental verification of these results are currently 
underway. Furthermore, there is a great deal that should be explored to 
improve the aerodynamic efficiency of the airplane. One way to reduce 
the sodic boom is to increase the overall efficiency of the aircraft. Im- 
provements in the aerodynamic parameters of lift-to-drag ratio, structural 
efficiency, specific fuel consumption, and engine-thrust-to-weight ratio 
reduce the aircraft’s sonic boom. In the process of reducing sonic 
boom by aircraft modifications, the aerodynamic parameters must not 
be penalized to any large extent. Thus, progress in this field, in which 
there have been intense feelings that little could be accomplished, is 
not only moving rapidly but in an encouraging fashion. 

This research must be continued or even expanded if practical 
supersonic transports with minimum and acceptable sonic boom charac- 
teristics are to be built. 

IRA R. SCHWARTZ 
Aerodynamics and Vehicle Systems Division 
O f i e  of Advanced Research and Technology 
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I 

PREDICTION OF SONIC BOOM GENERATION AND 
PROPAGATION -THEORY AND EXPERIMENT 

Chairman: A. FERRI 



Nonlinear Effects on Sonic Boom Intensity 

M. LANDAHL, I. RYHMING, AND P. LOFGREN 
Aeronautical Research Institute of Sweden 

In an earlier paper (ref. 1) it was shown that first-order acoustic 
theory is capable of describing the supersonic flow at large distances from 
a three-dimensional body with a relative error of order c4, where E is 
the thickness ratio of the equivalent body of revolution. Thus, for slender 
configurations the first-order theory will be quite accurate and higher 
order effects will be confined primarily to the near field where they will 
contribute to the Whitham F-function with terms that are of order e2 
relative to linearized theory. Second-order slender-body theory was 
used to demonstrate that these terms may become quite important, par- 
ticularly at high Mach numbers. 

Van Dyke (ref. 2) has demonstrated that second-order theory gives a 
good approximation to surface pressure for axisymmetric flow. However, 
his solution is not uniformly valid for large distances, so it is not directly 
applicable to the sonic boom problem. Lighthill (ref. 3) indicated that 
second-order theory could be made uniformly valid by reinterpreting the 
distance downstream from the free-stream Mach cone as that of the dis- 
tance downstream from the limit cone; i.e., effectively by readjusting the 
linearized characteristics as in the Whitham theory. It is the purpose 
of the present paper to show that the uniformly valid second-order solu- 
tion can in fact be expressed in a very simple functional form, provided 
both families of characteristics are readjusted in the manner proposed 
by Lin (ref. 4) and further extended by Oswatitsch (ref. 5). It is also shown 
that the second-order, three-dimensional, far-field solution expressed in 
cylindrical coordinates can be cast in a similar form but will involve a 
readjustment of the angular coordinate as well. From this, conclusions 
are drawn as to how simple, approximate solutions can be constructed 
that are uniformly va&d in the whole flow field. 

LIN-OSWATITSCH VARIABLES 

Lin (ref. 4) showed that first-order, small-perturbation acoustic theory 
for two-dimensional flow could be made uniformly valid if both dependent 
and independent variables were perturbed so as  to represent the two 

3 
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Physical plane Transformed plane 

FIGURE 1. - Lin-Oswatitsch variables. 

families of characteristics correctly to the order considered. Oswatitsch 
(ref. 5) has developed this idea further and also applied it to a number of 
three-dimensional problems. 

We shall first consider the axisymmetric case. In Oswatitsch's method, 
new independent coordinates xo and ro (fig. 1) are introduced such that 
both families of characteristics become the straight lines 

( 1 )  y = xo - Pro = constant 

(2) z = xo + Pro = constant 

The appropriate transformation can be found through integration of the 
Mach line slope expressions expanded to first order in perturbation 
velocities: 

y = constant: 
d r  1 K - M 2  M2 

u + - v  -=--- 
k P  P P2 

z = constant: 
dr 1 K - M 2  M2 

u + - v  -=-- 
P + P  P' 

(3) 

(4) 

where K = ( y  + l )M4/2PZ,  P = m, and u and v are the dimension- 
less perturbation velocity components in the x and r directions, 
respectively. Hence, for y = constant, 

r = - -  ' (K--M') / u d x + F  / v dx+constant 
P P (5) 
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the integrations to be carried out along y= constant. Similarly for 
z=  constant, 

To lowest order, x= xo and r=  ro. 
tion (5) and dz = dy/2 in equation 

dx+, 0 dx+ constant (6) 
M’ P- I z=const. 

Hence, one can set dx = dz/2 in equa- 
(6). Furthermore, to lowest order one 

can for u and v use the linearized first-order solution. Expressed in terms 
of y= x - Pr and z= x + Pr, the linearized equation for the perturbation 
velocity potential reads 

which can also be written in the following alternate forms: 

i) 
cpz = -G [2 (2 --Y)cp*+ cpl 

Henc d 
u dz=- ( c p , + c p z )  dz= (z-y)cpg+constant (10) 2 ’I 

and 

u dz=- (cp,+cp, )  dy= (y-z)qz+constant (11) I z= const. 2 ’ I  
In a similar manner the integrals of v can be calculated. Replacing y and 
z by their expressions (1) and (2), we find that for the downstream 
characteristics, 

1 
2 z - P r =  y+- K ( z - y )  

whereas for the upstream ones, 

Here we have chosen the integration constants y and z so that the zeroth- 
order expressions are recovered when there are no disturbances. 

410-095 o - n - a  
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From equations (1) and (3, we then find the following transformation 
formulas: 

x = xo - Krov - M Z q  

For a three-dimensional flow, xo and ro coordinates defined by equa- 
tions (1) to (4) in the same manner will form curved nonaxisymmetric 
surfaces with the angle 8 as a parameter. It will then in general not be 
possible to carry out the integrations in closed form, because instead of 
equation (7) one would now have 

We shall use this to find approximations valid for large radial distances; 
Le., for large (2-y), for which we would expect that the terms with 
derivatives with respect to y dominate. Thus equation (16) may be 
rewritten as follows: 

which can be solved by iteration, neglecting the right-hand side in the 
first approximation. This gives the following series solution in inverse 
powers of (2-y): 

where F is the Whitham F-function defined in the usual manner as 

with f being the equivalent source strength and 

Because 
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we then have the following approximations for the first-order velocity 
components and perturbation potential at large distances: 

Q=- Fl + . . .  
( 2  - y) ' I 2  

These can now be introduced into the Mach line slope relations. From 
equation (24) it follows that 

for large distances, which can be used directly with equation (16) to 
yield the following approximation for the surfaces y= constant: 

(26) 

For the second set, z = constant, there will be no change to lowest order. 
In terms of the variables xo and ro, we thus find the following approximate 
expressions (cf. eqs. (17) and (18)): 

(27) 
aw 
ae x =  xo - Krov- M 2 q  + Kro - 

where we have used the first-order expression for the third velocity 
component 

(29) 
1 

W'G QO 

As the contribution from the term aw/ae would be small for both small 
and large distances, it is likely that equations (27) and (28) give good 
approximations to the Mach conoids everywhere. For large distances, 
ro will not deviate substantially from r ,  and it is then convenient to express 
the equation for the downstream characteristic surfaces in terms of 
x ,  r,  and y. Making use of equations (20) to (24), we find after some 
calculations 
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The first two terms on the right-hand side of equation (30) are recognized 
as those appearing in the Whitham theory. The additional terms arise 
from near-field effects in the first-order solution. 

In Oswatitsch’s method, the third variable, in this case 8, is also per- 
turbed in a manner that involves the bicharacteristics of the flow. Here, 
we shall instead select the perturbation of 8 so as to produce the simplest 
functional form for the second-order solution. 

UNIFORMLY VALID SECOND-ORDER SOLUTION FOR AXISYMMETRIC FLOW 

We shall determine a uniformly valid solution to second order for the 
axisymmetric case by making the appropriate transformations in Van 
Dyke’s (ref. 2) second-order solution. His solution reads 

(p2 = ( 1 + M2u) cp + Kruv - + M 2 d  + x (32) 

Here x is a homogeneous solution to the linearized equation, which will 
be omitted in the following analysis as it can always be absorbed in the 
first-order potential cp. The triple-product term is important only in the 
immediate neighborhood of the axis and will have an influence on the 
far field only insofar as it will modify the boundary values on the body 
surface. We shall therefore leave it out in what follows, as it can always 
be added later whenever needed. 

By expansion in terms of X O - x  and r0-r,  it is easily seen by aid of 
equations (14) and (15) that an equivalent expression for (p2 in terms of 
the transformed variables xo and ro is given by 

From this one may 
I remembering that 

cpr=cp(xo,  ro) - Krovu (33) 

calculate the velocity components to second order 

and 

(35) 

(36) 

a a a 
ax ax, a ro 

a a a 
a r  axo a ro 

- --- (1  + Krov,, + M2u) - + Kroux0- 

--= (Krovro+ Kv+M’v) -+ ( 1  -Krour0+Ku)- 
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to first order, for moderate ro. The results are 

It is suggestive that the remaining coefficient may to the same order of 
magnitude be approximated by 

The results, equations (33), (37), and (38), given in implicit forms by aid 
of equations (14) and (15), are uniformly valid to second order everywhere 
as they are equivalent to Van Dyke's solution for moderate values of 
ro and approach the first-order solutions for large distances, which was 
shown to be correct to order c4. The triple-product term can be added 
separately if so desired. It does not seem to be possible to include it 
through incorporation of additional terms in equations (14) and (15). 

The above formulas are presently being used to calculate the Whitham 
F-function to second order for a parabolic spindle of thickness ratio 
~=0 .0589  at M=3. As the slender-body theory was found to be quite 
inaccurate for this case, a new calculation procedure has been developed 
that is based on an improved quasi-cylindrical solution. 

NONAXISYMMETRIC FLOW 

As it is not possible to find a simple analytical solution for the near 
field of a general three-dimensional body, we shall instead make use of 
the previously developed second-order far-field solution. In the present 
notation, this solution was given by 

where 

and 

The terms involving derivatives with respect to 8 were given incorrectly in ref. 1. 
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This solution was obtained by assuming p r  to be large and of order e-4. 
The first and second approximations differ by terms of order e8, which 
would be unimportant in any practical situation. However, we are here 
interested in moderately large p r ,  for which the expansion still is a good 
one, but the second-order term will have some terms that give contribu- 
tions of order e4. The term involving the logarithm will be at most of 
order e6 and will consequently be ignored; however, it can be completely 
absorbed in the first-order term if the characteristic variable is modified 
to a higher order. 

A comparison of equation (41) with equation (30) shows that s = y  to 
lowest order. One can simplify equation (40) considerably by expressing 
it instead in terms of y. Expansion of equation (41) about s = y gives 

which, upon insertion into equation (m), gives 

where, again, we have ignored terms that give contributions of order e6 or 
higher. This can be further simplified by introducing ro as given by the 
first two terms of equation (29) and noting that the last terms arise from 
the asymptotic representation of the linear solution (cf. eq. (22)). A solu- 
tion equivalent to equation (44) for large p r  is therefore 

The last term can be absorbed in the linear solution by perturbing 8 
as well, setting 

where 

8=80+ A8 

and 

(47) 

(48) 
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It can be shown by an asymptotic analysis that the value of A6 given by 
equation (48) is half of the angular displacement of the bicharacteristic 
(acoustic ray) along the Mach conoid through that point. With the aid 
of equations (27) and (28), we thus have a parametric representation of 
the second-order solution in terms of the first-order one that is of the 
same form as the axisymmetric solution (eq. (38)), except that now also 
the angular variable is perturbed. For the perturbation velocity potential 
one finds through integration over xo holding ro and 60 fixed, that 

, 

1 

By differentiation with respect to r ,  one finds after some calculations, 
that 

It is thus seen that the second-order asymptotic solution for a nonaxi- 
symmetric flow can be put in the same form as the axisymmetric uni- 
formly valid one. The only difference is that the transformed variables 
become somewhat modified to account for nonaxisymmetric effects. 

The third velocity component w is given only to first-order accuracy 
(eq. (29)) in this approximation because the nonlinear terms involving w 
and its derivatives become of higher order at large distances. 

The transformation formulas developed account correctly for second- 
order effects only at large distances from the body, but their simple 
structure gives some hope that they might also apply to a good approxi- 
mation near the body, thus considerably extending the usefulness of 
linearized theory. However, certain difficulties become readily apparent 
in practical applications. Thus, for example, one would obtain different 
results depending on how the body is located in the coordinate system. 
We shall therefore explore an alternative way to utilize the results 
obtained. 

PERTURBATION OF A NONUNIFORM FLOW FIELD 

In linearized aerodynamic theory, a common method to construct flow 
fields is io aiipeiimpose eleilieiitary solutions like those for a s ~ i i r ~ e  or 
doublet so as to produce a velocity field satisfying a given set of boundary 
conditions. Thus, for example, by superimposing linear source distribu- 
tions along each chord of a thin wing (fig. 2), one can produce the com- 
plete flow field for the nonlifting case. For the lifting case, one needs 
doublets as well, which can be obtained by differentiating the source 
solution with respect to z. 
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X X' 

FIGURE 2. -Construction of nonlinear flow field through superposition. 

It is possible in principle to use this general technique in a nonlinear 
flow problem also. The difference is that each additional infinitesimal 
source or line source distribution is located in a nonuniform flow field 
created by the other sources. To build up a nonlinear flow field, one would 
thus need the solution for a source or other flow element situated in a 
nonuniform flow. Previous applications of this idea, which is inherent in 
the method of parametric differentiation, have indicated that accurate 
results for surface pressures are obtained even if one ignores the effects 
of flow nonuniformity on the elementary solution, provided only that one 
bases the solution on the local flow properties at the singularity. This 
local approximation has been used successfully for the transonic flow 
around an airfoil (ref. 6) (for which it becomes identical with the method of 
local linearization by Spreiter and Alksne) and the high-Mach-number 
supersonic flow around bodies of revolution (ref. 7). 

From a second-order solution, it is possible to calculate the first-order 
effects of flow uniformities on a sourcelike or other type of perturbation 
that is used to construct the flow. Let us for simplicity consider the situa- 
tion depicted in figure 2; i.e., the perturbation caused by a line of sources 
along a given spanwise position. If the flow were uniform, the perturba- 
tion would be axisymmetric around the axis x'. It will therefore be con- 
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venient to work with a cylindrical coordinate system centered around 
x’. For simplicity we will omit the primes in the following explanation. 
We shall denote perturbed quantities by the symbol 6; thus & is the 
first-order potential due to the perturbation and is independent of 8. The 
effects of flow nonuniformity will appear first in the next approximation 
&2, which is to be obtained from a perturbation of the second-order 
solution, equation (49). When the velocity field is perturbed, the char- 
acteristic surfaces will also change by quantities proportional to the 
perturbation. If attention is fixed on a particular point ( x ,  r, 8) in the 
field, it follows from equations (27) and (28) that the characteristic co- 
ordinates xo and ro will change by amounts 6x0 and Sro given by the 
equations 

(For an axisymmetric perturbation, it turns out that to first order, 680=0.) 
From equation (49), one finds that 

Upon solving 6x0 and 6ro from equations (51) and (52) and simplifying, 
neglecting higher order terms, one obtains 

The factor ( 1  + M*u) may be replaced by p,/p as before. The integral 
term represents the effects of nonaxisymmetry on the perturbation. 
This term will be small both near the axis and far from the axis and can 
probably be omitted altogether without serious loss of accuracy. This 
would leave the simple approximation 

In the application of this approximate solution, the main computational 
work would be associated with the recalculation of the characteristic 
coordinates at each step. These would have to be found from numerical 
integration. 
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By differentiation with respect to z =  r sin 8 ,  one can in principle obtain 
a corresponding solution for a doublet. For a more general nonaxisym- 
metric perturbation, it becomes more convenient to work instead directly 
with the perturbed velocity components. The perturbations are then 
found, to lowest order, to propagate along the bicharacteristics of the 
basic nonuniform flow in accordance with geometrical acoustics. 

CONCLUSIONS 

By application of a coordinate perturbation to the second-order solu- 
tion for axisymmetric flow in the manner of Lin (ref. 4) and Oswatitsch 
(ref. 5) so as to make both sets of characteristics appear as straight lines 
to first order, it was found possible to cast the results for the velocity 
components in very simple forms. An extension of Whitham's principle 
to second order has thereby been found, which is only slightly more 
complicated than the first-order one in that the first-order u-component 
is multiplied with the ratio of the free-stream density to local density. 
The same simple functional form was also found to apply at large dis- 
tances for nonaxisymmetric flow when expressed in cylindrical coordi- 
nates except that then a perturbation of the third, angular, variable is 
needed as well. This would suggest that an approximate but very simple 
way to estimate the major nonlinear effects on the F-function would 
be to determine it for a modified body deformed in the same manner as 
the Mach conoids. 

The second-order solution was used to determine the effect of a small 
sourcelike perturbation on a nonaxisymmetric flow. A simple approxima- 
tion was proposed that is likely to show small errors everywhere. This 
could be employed in a calculation scheme to build up a nonlinear flow 
field through step-by-step small perturbations. 

There are several other applications of the present results that readily 
suggest themselves, both to the sonic boom problem and to other super- 
sonic flow-field problems. One often overlooked area of application of 
aerodynamic theory is that of the correction of wind-tunnel testing 
results. The solution for the small perturbation of a nonuniform flow 
field could be employed to devise simple formulas to correct for wind- 
tunnel flow imperfections, which are likely to have large effects at high 
Mach number. Another such application is to the correction of wind- 
tunnel measurements of the F-functions for near-field and nonlinear 
effects. This is considered in a separate paper in this volume.' 
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Numerical Solutions for the Complete Shock Wave Structure 
Behind Supersonic-Edge Delta Wings 

HARVARD LOMAX AND PAUL KUTLER 
NASA Ames Research Center 

I 

At the second conference on sonic boom research, the senior author 
presented a paper (ref. 1) that suggested the possibility of studying cer- 
tain aspects of the sonic boom problem by means of numerical finite- 
difference methods carried out on a digital computer that is coupled with 
a cathode-ray display tube. The idea was that the coalescing shock field 
surrounding not-so-slender wing-body combinations could be computed 
effectively if the calculations, as they were being carried out, were moni- 
tored by real-time reaction to visual displays. Since that time, this con- 
cept has been developed and its effectiveness at present can be assessed 
by the results presented in the following discussion. 

SHOCK-CAPTURING TECHNIQUE 

Two distinct techniques are used in practice to compute flows with 
surrounding and embedded shocks. One is referred to as a sharp-shock 
technique, and the other as a shock-capturing technique. Sharp-shock 

I techniques isolate all shock waves by some complicated numerical and/or 
logical procedure and apply the Rankine-Hugoniot shock relations 
across them to identify their strength and position. Shock-capturing 
techniques, on the other hand, advance the initial data through a fixed 
mesh, applying boundary conditions only at  the body and in the free 
stream. Shock and expansion waves form and decay automatically with- 
out special treatments of any kind. 

The acceptance of shock-capturing numerical methods is far from 
universal. The principal objections are their inability to resolve the shock 
location with absolute precision and their tendency to give spurious 
fluctuations for the magnitudes of the dependent variables in the vicinity 
of the shock. Our purpose here is to show that second-order shock- 
capturing methods currently available are reliable enough for many 
practical purposes, in particular, to study the shock structure about 

: Or the appropriate weak soiution in the sense deveioped by Lax in ref. 2. 

17 
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lifting wings flying at supersonic speeds. This confidence is established 
by using such methods to compute a variety of known flow fields obtained 
from experiment or from calculations made using sharp-shock proce- 
dures; e.g., the method of characteristics. Some of these comparisons 
are presented below. 

The success of a shock-capturing technique in correctly predicting 
complicated flow fields depends on the choice of the finite-difference 
scheme. The particular scheme used for all of our calculations is the 
variant of the second-order Lax-Wendroff method developed by MacCor- 
mack (ref. 3). It was applied to the conservation-law form of the Eulerian 
equations written for a generalized orthogonal coordinate system. The 
basic formulation of the gas-dynamic equations is 

E=CZ 

E< + Fq + G* + H = 0 

PU 

PUV 
PUW 

P+PU2 

and 

H = f b ,  P ,  u ,  v, w ,  a,  P ,  Y l  

The MacCormack difference scheme is 
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In every case a coordinate system was chosen such that the wing and/or 
body were parallel to at least one of the coordinate axes (conformal co- 
ordinate system). When this method is applied to the linear wave equa- 
tion, one can show (see, e.g., ref. 4) that it has no “artificial viscosity,” 
that it has dispersion proportional to the third space derivative of a veloc- 
ity and that it has dissipation proportional to the fourth space derivative 
of a velocity. One can also show that it satisfies the “shift condition” (a 
concept developed in ref. 4), which is hypothesized to be a necessary 
condition for any optimum shock-capturing method. 

RESULTS AND DISCUSSION 

A variety of wings, bodies, and their combination have been used for 
flow-field simulations. Some are shown in figure 1. The conical bodies in- 
clude wedges, cones, planar delta wings, and delta wings with dihedral 
mounted on conical bodies, all of which were at an angle of attack. (The 
latter two studies are restricted, at  present, to supersonic leading edges.) 
The method of solution for the flow field about thkse particular bodies 
was simplified by the fact that the flow was conical for each. This per- 
mitted the use of a distance asymptotic procedure for solving the three- 
dimensional, hyperbolic, steady-flow equations. Nonconical flow-field 
calculations were obtained for two-dimensional airfoils and axisymmetric 
bodies and finally for the completely three-dimensional flow behind a 
lifting delta wing with supersonic leading edges. 

The ability of a shock-capturing technique to predict the location and 
intensity of attached secondary shocks is demonstrated by the results 

vertical lines at various stations behind a circular arc airfoil in Mach 2 
flow. Figure 3 shows similar pressure distributions behind a pointed 
ogive in Mach 5 flow. Both cases are compared with solutions computed 

shc!er~ Amlaroc 2 12.r 3. Fig2-e 2 f h n y s  the pressme .Ijk?-iic!j&fi + ~ m  n ----- -- 

FIGURE 1. -Body configurations studied for flow-field simulations. 

~~ ~ 
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FIGURE 2. -Pressure distribution along vertical lines behind a circular arc airfoil. 

by the method of characteristics. For both the two-dimensional and 
axisymmetric flow fields, the locations of the shock waves are predicted 
quite accurately by the shock-capturing technique. However, the peak 
overpressure of the waves is somewhat dissipated. 

Consider next the flow about a cone. When the angle of attack of a 
cone in a supersonic flow field is increased so that supersonic crossflow 
velocities result, there exists the possibility of embedded shock waves 
forming on the lee side of the cone. This problem, although being multi- 

x/c = 2.4 
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FIGURE 3. -Pressure distribution along vertical lines behind a pointed ogive. 
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FIGURE 4. -Meridional pressure d i s  
tribution for a 20" cone. 
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FIGURE 5. -Spanwise pressure distribution on 
compression side of planar delta wing. 

shocked, poses no real problem for a shock-capturing technique. Figure 4 
shows the meridional pressure distributions for various angles of attack 
of a 20" cone in Mach 5 flow. From this figure it can be seen that as the 
angle of attack is increased, a recompression region begins to form near 
the 150" meridional plane for an angle of attack of 9". As the angle of 
attack is increased further, this recompression region intensifies and 
forms a shock wave near the 155" meridional plane for an angle of attack 
of 14". Because shock-capturing techniques tend to spread shocks over 
two or three mesh intervals, they do not appear as sharp discontinuities. 
For the smaller angle-of-attack cases, the results were compared with 
those of Babenko, Moretti, Holt, and Jones (refs. 5 ,6 ,  7, and 8, respec- 
tively) and all were in excellent agreement. 

To determine the flow behind a planar supersonic-edge delta wing, it 
is first necessary to generate converged solutions for the conical flow 
fie!d on both the compression a i d  expansion sides. These can then be 
used as initial data for the wake flow calculations. This was done, and the 
results were compared with the best available theories. Figure 5 displays 
the variation of the pressure coefficient along the semispan for a 50" 
swept wing in Mach 4 flow at 5", lo", and 15" angles of attack. The results 
are compared with those of South (ref. 9). South, in turn, made compari- 
sons with Voskresenskii (ref. 10) and found good agreement, and with 
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FIWRE 6 - Spanwise pressure distribution on expanslon side of planar delta wing. 

PRESSURE AND LOAD DISTRIBUTION ON A PLANAR DELTA WING 

OMPRESSION SIDE 

- 

.I2 - 

EXPANSION SIDE 

-0- COMPUTED 
- LINEAR THEORY 1 1 , 1 1 ,  

Mm.3, Q=3O 0 1 2 3 4 5 6  
A =  50" Q 

FIGURE 7. -Pressure and load distribution on a planar delta wing. 
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'' 
Babaev (ref. 11) and found poor agreement. The present results substanti- 
ate South's good comparison with Voskresenskii. 

The surface pressure coefficient on the expansion side of a 45" swept 
delta wing in Mach 3 flow for 4", 8", and 12" angles of attack is shown in 
figure 6. The results are compared with a method of characteristics tech- 
nique devised by Beeman and Powers (ref. 12). The latter chose to neglect 
the weak crossflow shock, assuming instead an isentropic compression. 
The result of their assumption is evidenced by the disagreement in the 
location of the embedded shock. However, the pressure distributions on 
either side of the shock are in good agreement. 

The results obtained for the compression and expansion side-flow 
fields of a 50" swept delta wing at 3" angle of attack in Mach 3 flow are 
compared with linear theory in figure 7. It is interesting to note that al- 
though there is considerable disagreement between the two theories for 
the individual surface pressure distributions and a slight disagreement in 
in the load distribution, there is almost no variation in the plot of C,, 
versus a for the two theories. 

The two solutions for the upper and lower flow fields of the delta wing 
can be combined at the trailing edge to form the initial data plane from 
which calculations can be continued downstream. The results of such a 
computation are shown in figure 8, which is a reproduction of a sequence 
of photographs taken from the cathode-ray display tube as the flow field 
developed behind the wing. In figure 8(b), the formation of the trailing 
edge shock is clearly evident in the expansion region above the delta- 
wing image, as is the trailing edge expansion fan below the delta-wing 
image. The governing equations were solved in conical coordinates, thus 
giving the appearance of a shrinking wing in a fixed flow field as the 
intcgration proceeds downstream. All resdts  shcwr. in the figwe were 
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obtained from an integration of the full Eulerian equations over a 69 by 32 
mesh. About 20 min of central processing unit time on an IBM 360/67 
were required to carry the solution from the trailing edge to 17 chord 
lengths * behind it. The calculations were monitored from a cathode-ray 
tube, and instabilities were suppressed when they appeared. This in- 
creased the real-time computation to about 30 min. The shock and rare- 
faction interaction were clearly evident in the moving pictures of the 
wake. 

The case studied applied to a planar delta wing. The flow is conical so 
that the chord load distribution is triangular. Notice that the pressure 
distribution along the centerline below the wing is also nearly triangular 
after 4.3 chord lengths have been traversed. Future calculations will 
show these signatures along horizontal lines beneath the wing, but it is 
hypothesized at this time that the horizontal pressure distribution 4 
chord lengths below the body will also be very nearly triangular. Non- 
linear effects have, of course, been included, as well as complete inter- 
action with both wingtips. One can speculate, therefore, that from the 
results shown in figure 8(c), the proper F-function could be determined 
and used to extrapolate the signature indefinitely. Studies along these 
lines are being carried out. Camber and thickness effects on simulated 
flows of the type just described are also projects of the immediate future. 
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Theoretical Problems Related to Sonic Boom 

W. D. HAYES, J. H. GARDNER, D. A. CAUGHEY, AND F. B. WEISKOPF, JR. 
Princeton University 

This paper is a brief report of research in progress at Princeton University on 
problems of wave propagation and sonic boom. Some of the problems studied are 
directly relevant to the sonic boom aspects of design and operation of supersonic 
aircraft. Others are concerned with general wave theory and concern phenomena 
more or less common to all propagating waves. 

COMPUTATION OF TRANSONIC FLOWS WITH SHOCK WAVES 

This investigation, carried out by Gardner using Princeton Univer- 
sity’s IBM 360/91 computer, had its inception in the nonlinear caustic 
problem. The passage of a sonic boom through a caustic is governed by 
equations that are essentially the same as the classical ones of transonic 
flow. A shock wave in a caustic region is expected to be a lambda shock. 

methods. Within the flow field, a Lax-Wendroff algorithm is used. This 
algorithm is stable in transonic flows, although the stability is marginal 
and care must be taken in setting initial conditions. Appropriate bound- 
ary conditions to be imposed on the boundaries of the calculation domain 
are chosen. The new feature in the method lies in the treatment of shock 
waves. The usual method of treatment through spreading the shock over 
several mesh points was not used. 

A shock is represented separately by a function describing its shape. 
Hugoniot conditions for the shock can be satisfied, in general, only if the 
shock is moving with a given calculable velocity. In the numerical 
method, this shock velocity is used to relocate the shock in the next 
iteration. 

The lambda shock of the noniinear caustic proS!cm invdves three 
shock waves that intersect at a triple point. The triple point and the point 
at which the shock disappears into the elliptic region are nonanalytic 
points for the flow. The computational task of keeping track of three 
shocks and their intersections imposed a complication on the numerical 
scheme that it seemed best to avoid until the other aspects of the numeri- 
cal method were tested. Accordingly, this particular problem was put 

I The numerical method used was decided upon after trials with other 
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aside after earlier calculations indicated that there would be some 
difficulty. 

The problem taken up was that of a symmetric airfoil in transonic 
flow, with the flow subsonic at infinity. In this problem there is a single 
shock. The outer point at which the shock disappears into the elliptic 
region is easily handled. The foot of the shock on the airfoil is a non- 
analytic point in the flow field that requires separate treatment. 

The calculational difficulty that has not as yet been overcome is insta- 
bility or drifting of the shock. It is hoped that this difficulty can be solved 
in the near future. 

SINGULAR RAYS 

A singular ray is a ray in geometric acoustics (or optics) at which the 
solution is singular, so that the solution of geometric acoustics fails in its 
neighborhood. The problem becomes locally a diffraction problem and 
requires a full solution of the wave equation. Of particular interest in 
sonic boom problems are those rays for which the corresponding cutting 
plane passes through a straight leading (or trailing) edge. The particular 
aspect of singular ray problems of interest is the influence of nonlinear 
terms on their solution. 

Two canonical problems may be distinguished. One is the singular ray 
as a singular direction for the F-function for a finite body. The other is 
the singular ray in a conical flow from a semi-infinite body. The linear 
solutions in both cases are well known. In the first case, we have come to 
the conclusion that the shock wave present absorbs the singular ray in 
such a way that the lateral gradients in the remaining wave system are 
asymptotically negligible. The standard Landau-Whitham treatment of 
wave distortion and shock development should apply without modifica- 
tion in the asymptotic field, with the lateral variable (usually the azimuth 
angle) entering only as a parameter. Thus there is no truly singular ray 
in the asymptotic nonlinear theory. Singular rays remain of interest in 
the near field before the Landau-Whitham asymptotic theory becomes 
valid. 

In the conical case the singular ray is not trivial. The canonical 
equation governing this case had been found earlier by Kuo (ref. 1). Our 
result in this case is that the equations cannot be linearized by the 
distortion of the Landau-Whitham theory. This means that the plausible 
method of applying the standard distortion and shock fitting to the linear 
solution is incorrect. The problem can probably only be solved nu- 
merically, with the shock position appearing as an essential part of the 
solution. 

BANGLESS BOOM OPTIMUMS 

One conceivable way of solving the sonic boom problem for supersonic 
transport aircraft is to design them so that the signature at the ground 
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includes no shock wave. With the maximum shock strength labeled the 
“bang” and the impulse under the major lobe labeled the “boom,” such 
a signature is a “bangless boom.” The phenomenon of “freezing” of 
the signature shape in a stratified atmosphere makes this possibility 
more likely than would be concluded from formulas based upon a uniform 
atmosphere. This approach immediately suggests an optimization 
problem: For an aircraft of specified effective length at a high altitude, 
determine the maximum gross weight that causes no (or rather an 
incipient) shock wave on the ground. Other related optimization problems 
may be posed, but here we consider only the one. It is the basic problem 
of potential practical interest. 

For no shock to appear in the final signature, the maximum slope of the 
F-function must be less than the inverse of the corresponding age 
variable. This maximum slope is designated A. Thus an inequality 
constraint is imposed upon the derivative of the F-function. The problem 
is to find the maximum of the total effective lift or gross weight 

with the effective length given. For simplicity, the ray immediately 
beneath the aircraft is considered; results for other rays are no different 
essentially. The axial lift distribution 1 is related to the F-function through 

where p = (M2 - 1) 1’2. 

The solution is readily obtained on a heuristic basis. As in many 
Optimization problems with inequality constraints, we expect the solution 
to satisfy the corresponding equality over most of the domain. Thus, 
over most of 0 < x < L, F‘ = A .  At switching points, w e  expect F to 
have a negative discontinuity. We can deduce that F(0) S 0, that 
1(L)  = 0 ,  and that 1’(L)  2 0. In the particular problem considered, the 
inequalities on F (0 )  and 1’(L) are equalities. We conclude that F (x )  
is given by 

F = A x  O S X < 3 €  (3a) 

F=A(x-2L/31/2) 3L < x S L (3b) 

The corresponding lift distribution function 1 (x) is obtainable directly 
from equation (2). 

One interesting task, carried out by Weiskopf, has been the justifica- 
tion of this result by the calculus of variations. Established mctheds for 
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problems with inequality constraints do not apply because of the inter- 
vention of the Abel transform, equation (2), in the problem. A nontrivial 
extension of the basic theory was needed. As one example of a detail, 
the condition 1 ( L )  = 0 had to be used both as a boundary condition on 1 
and, through equation (2), as an isoperimetric constraint on F. 

We express the maximum effective gross weight of the aircraft under 
simplifying assumptions. The aircraft is in uniform level flight at a high 
altitude, and the ray immediately beneath the aircraft is considered. The 
appropriate age is that corresponding to an altitude difference of 7r/2 
times the scale height a2/yg  at the aircraft altitude. The maximum gross 
weight is then 

Note that this value depends on thermodynamic properties only at the 
aircraft altitude and is strongly dependent upon the effective length. 

The maximum pressure in the signature may be expressed approxi- 
mately, without the ground reflection factor, as 

Here poao is the acoustic impedance at  the ground. The quantity h is the 
aircraft altitude or, more strictly, ray tube width at  the ground per unit 
azimuth angle at  the aircraft. 

For rays not immediately beneath the aircraft, if the effective axial 
lift distribution is unchanged by the change in the azimuth angle, equa- 
tion (4) still holds. This result indicates that attention must be paid during 
aircraft design to the F-function over a range of azimuth angles. It would 
be clearly possible to have a bangless boom immediately beneath the 
aircraft with a strong bang appearing off to the side. 

This result, equation (4), is to be contrasted with the classical Jones 
optimum (ref. 2) for the far field. To make the two cases more parallel, 
we pose Jones' problem as that of finding the maximum gross weight for 
a given shock strength A p s h o c k .  This result is 

under the same approximations for equations (4) and (5). The maximum 
effective gross weight here varies inversely as the acoustic impedance 
at the ground and is essentially independent of thermodynamic prop- 
erties at the aircraft altitude. It has but a very weak dependence upon L. 
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Two principal implications of the basic equation (4) on a bangless 

boom aircraft design may be pointed out. The aircraft must not fly too 
high; the results for 30000 ft appear reasonable and attainable, while 
those for 60000 ft are out of reasonable range. The aircraft effective 
length must, by careful design, be made as large as possible. If the 
aircraft is to fly at  high Mach number, there must be a vertical distribu- 
tion of aerodynamic components, with some components located low 
and forward and others high and aft. 

GENERAL W A V E  THEORY 

There is underway a development of general wave theory initiated 
and partly carried out by Whitham. This general theory, constructed 
for nonlinear dispersive waves, gives as a relatively simple special case 
the Blokhintsev invariance used in the theory of sonic boom with winds. 
Techniques developed for the computation of ray tube area in sonic 
boom problems can be generalized to analogous computations for linear 
dispersive waves. 

Two papers by the senior author have appeared (ref. 3). One of these, on 
kinematic wave theory, presents the generalization of the ray tube area 
algorithms to dispersive waves. The other, on conservation of wave 
action, shows that a locally conserved action density exists in modal 
problems and that in linear acoustic problems this is twice the intrinsic 
kinetic energy density divided by the intrinsic frequency. The word 
“intrinsic” here means “as measured by an observer moving with the 
fluid.” 

In a paper in preparation it will be shown that the group velocity 
defined as a gradient of frequency in a wave number space has a clear-cut 
physical interpretation in terms of action flux in strongly nonlinear wave 
propagation. Problems of the type treated by Lighthill (ref. 4) are under 
study. 
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The Effects of Atmospheric Inhomogeneities on Sonic Boom 

A. R. GEORGE 
1 Cornel1 University 

The propagation of sonic booms in an idealized atmosphere con- 
taining only large-scale vertically stratified variations in properties is 
quite well understood. (For example, see refs. 1 and 2.) However, in 
addition to large-scale stratifications, the real atmosphere also contains 
less intense smaller scale inhomogeneities. These range from large- 
scale weather phenomena such as fronts and storm systems through 
internal waves to turbulent velocity, density, and temperature fluctua- 
tions. The turbulent fluctuations occur over a spectrum of scales down to 
a fraction of an inch. These inhomogeneities affect the propagation of 
waves in a number of ways. 

Figure 1 shows an assortment of sonic boom signatures from each of 
two flights of a B-58 aircraft (ref. 3). The flights were made on two dif- 
ferent days at slightly different flight Mach numbers, altitudes, etc. 
However, the most important difference between the two flights was that 
the wind velocity was low for one flight and strong and gusty for the other. 
Both sets of measurements show deviations from a simple N-wave shape, 
the differences being much more pronounced for measurements made 
under the more strongly turbulent gusty conditions. This correlation 
between turbulence level in the lower atmosphere and a variation from 
N-wave shape is well established (refs. 4 to 7). Inspection of data such as 
that in figure 1 allows the identification of several types of differences 
between the measured signatures and those predicted without account- 
ing for atmospheric inhomogeneities. First, there are apparently random 
fluctuations about approximately the predicted wave shape. These are 
greatest directly behind the front and rear shocks and usually have little 
effect on the signatures far behind the shocks. The perturbations vary 
from signature to signature but are essentially identical in shape for the 
front and rear shocks of any given signatures. This indicates that the 
atmospheric inhomogeneities affecting the signatures are essentially 
uncorrelated between measuring stations but are essentially frozen 
over time scales of the order of time difference between the two shocks 
of a given signature. This is in accordance with knowledge of atmospheric 
turhnlenre G sernnd type of difference is that the shocks themselves 

I 
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are several orders of magnitude thicker than the Navier-Stokes viscous 
shock structure would predict. Typically, the viscous shock thickness 
for shocks of this strength is ft, whereas measured thicknesses 
range from approximately one to many feet. Third, there are apparently 
some variations in the overall strength of the waves from point to point for 
the same flight. 

The random perturbations together with the overall strength changes 
contribute to variations in Ap, which is defined as the maximum over- 
pressure of the wave. Experimental statistical studies have been made 
of Ap/Apc, where Apc is that calculated without turbulent effects (refs. 
7 and 8). These studies have shown that log ( Ap/Apr) exhibits an approxi- 
mately gaussian (normal) distribution. A typical plot of the probability 
of exceeding a given Ap/Apc is shown in figure 2 (ref. 8). A straight line 
on these ordinates corresponds to a normal distribution of log (Ap/Apc). 

The area under the positive part of the signature is called the impulse 
and is one of the factors influencing the effect of a boom on structures. 
If the random fluctuations are distributed about a mean wave shape, the 
impulse variation is a measure of the variations in overall wave strength. 
Statistical studies of impulse variations (refs. 8 and 9) often show less 
variability than Ap, implying that some of the A p  fluctuations are due 
to random perturbations rather than overall level changes. Typical im- 
pulse probability data are shown in figure 3 (ref. 8). 

The thickened shock structure is more difficult to document precisely 
because most experiments have measured the time to peak amplitude, 
which can sometimes grossly overestimate the rise time of the shock. 
(For example, see the uppermost left-hand signature in fig. 1, where Ap 
occurs well behind the shock.) Typical data are shown in figure 4 (ref. 8). 
It is apparent that the shock rise time is greater than 1 msec, but little 
more information on shock thickness can be obtained from this definition 
of rise time. 

Unfortunately not enough signatures have been published to enable 
one to make definitive empirical correlations between the effects them- 
selves and with atmospheric variables. Large quantities of signatures 
have been recorded, but usually only a few “illustrative” samples are 
shown in any given report. Depending on what is being illustrated, dif- 
ferent types of signatures tend to be shown in different publications. 
Descriptive labels such as “normal,” “peaked,” “normal-peaked,” etc., 
are sometimes reported for large numbers of signatures, but these labels 
are too subjective to be very informative. 

GEOMETRIC ACOUSTICS 

The first and simplest attempts at explaining some of the turbulent 
effects were based upon geometric acoustics. Random propagation speed 
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FIGURE 2.-Probability of equaling or exceeding Ap. 

variations due to atmospheric temperature or velocity fluctuations can 
be envisioned as  focusing or defocusing ray tubes passing through the 
inhomogeneities. Such a mechanism can only uniformly increase or 
decrease the strength of the N-waves as shown in figure 5. While this 
mechanism may partially explain impulse variations, it cannot explain 
changes in wave shape or shock thickness. 

We will now examine the conditions for validity of the geometric 
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acoustics approach. First, the basic assumption of geometric acoustics 
requires X/Lo 4 1, where X is the wavelength and Lo the length scale of 
the variations in the medium. The second limitation on the application 
of geometric acoustics is that diffraction phenomena be negligible (ref. 
10, sec. 7.7; ref. 11, sec. 59). By Huygens’ principle, we can consider 
any wavefront as  made up of sources that emit hemispherical wavefronts 
forward, which make up the signal for future times. In the geometric 

I/ I, 

FIGURE 3. -Probability of equaling or exceeding impulse I .  
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acoustics approximation, all of the wavelets from a given portion of a 
wavefront destructively interfere except in the ray tube associated with 
that portion of the front. Figure 6 shows wavelets from the two ends of a 
portion of a front of size Lo. For the interference to be destructive 
immediately outside of the ray tube of size Lo, we require that, after a 
propagation distance D = apt, the phase differences between the 
wavelets at the edge of the ray tube be large compared with a wave- 
length. From figure 7 this can be seen to require Dlcos 8 - D % A or for 
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f DEFOCUSED WAVE 

GEOMETRIC ACOUSTICS EFFECTS 

FIGURE 5.-Variations of N-wave level. 

small 8, AD/LS + 1; hD/LB is sometimes called the diffraction param- 
eter. Because geometric acoustics already requires A/& 4 1, the 
additional requirement is that the propagation distance not be too large 
compared to Lo, the scale of variations in the medium. If hD/Lg is not 
small, diffraction effects are important and the concepts of ray tubes 
and wavefronts lose their usefulness. 

Sonic boom signatures are typically several hundred feet long, thus 
containing Fourier components up to that wavelength. Then geometric 

RAY 
TUBE 
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FIGURE 6. - ~ ' s v e f i o n : ~  f i ~ m  ends of initial wavafru~it sogmei-ii. 
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-1 D 
FIGURE 7.-Path lengths. 

acoustics will only be valid for such large values of A only when con- 
sidering inhomogeneities with Lo on the order of lo3 ft or greater. This 
can be the case for moderate- to large-scale phenomena, such as  inversion 
waves and thermals, but will not be true for the smaller eddies associated 
with turbulence in the atmospheric boundary layer. 

Johnson (ref. 12) has applied geometric acoustics to find the overall 
level changes in sonic boom wave shapes due to inversion waves in the 
atmosphere. He carried out ray tracing calculations for a three-layer 
atmospheric inversion model with a sinusoidal height profile. The results 
show that these effects can be large enough to explain observed impulse 
variations. The initial stages of a program to experimentally verify the 
model was reported in annex D of reference 13 but apparently was not 
completed. 

Pan (ref. 14) has also carried out a similar analysis for simple models 
of a cloud layer and a cold front. However, tie presents examples showing 
ground overpressure as a function of position for a fixed time. Measured 
signatures correspond to time variations at a fixed position (fixed ray). 
As his signature shapes correspond to varying rays, they are not relevant 
to explaining the observed signature shape changes. 

DIFFRACTION AND SCAllERlNG 

To account for the effects of the full spectrum of atmospheric inhomo- 
geneities, diffraction must be accounted for. The most promising approach 
seems to be based upon small-perturbation scattering theory. As early 
as 1964, Kane and Palmer suggested that scattering theory might be 
applied to explain some of the characteristics of the perturbations in 
wave shapes and Ap (ref. 15). Pierce in 1968 demonstrated how diffrac- 
tion can affect sonic boom wave shapes (ref. 16). He noted that diffrac- 
tion can smear out some of the focusing effects predicted by geometric 
acoustics. As diffraction is more important for longer wavelengths, 
geometric focusing and defocusing affect primarily the shorter, higher 
frequency N-wave components (i.e., the parts of the signature near the 
shocks). Pierce presented an analysis, based on a Green's function solu- 
tion, for a hypothetical model of an N-wave with an initial two-dimen- 
sional parabolic distortion in its otherwise plane wavefront. His results, 
shown in figure 8, demonstrate how focusing and defocusing can be 
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restricted to the parts of the wave near the fronts. Although his analysis 
is not suited for generalization to realistic models of atmospheric sonic 
boom propagation, it is noteworthy in that it demonstrates the transition 
between geometric acoustics 

and the scattering theories 
AD - = arbitrary 
L; 

that will be discussed next. 
The analyses that have been most successful in explaining the random 

signal perturbations and shock thickening are based on the fact that the 
perturbations in velocity, sound speed, and density associated with 

t 

Fic t i tE  8. - Exarnpie of diirraction eirects from reference i6. 
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FIGURE 9.-Physical picture of scattering 

TRANSMITTED 
WAVE AT 
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atmospheric turbulence are small. Thus waves propagate almost as if 
in a homogeneous medium, and the corrections to this lowest order 
behavior can be obtained by a perturbation scheme. The physical picture 
is sketched in figure 9. To lowest order, the incident wave propagates 
as a plane wave. As it passes over any particular inhomogeneity, the plane 
wave alone does not quite satisfy the exact equations of motion char- 
acterizing the inhomogeneous medium. A small correction is needed 
at each inhomogeneity, which thus acts as a source emitting a scattered 
wave. These scattered waves appear as perturbations at and behind the 
original wave and are the random fluctuations observed behind 
the shocks. As the scattered waves carry some energy out of the incident 
waves’ direction, the original wave is modified by the energy lost. Be- 
cause energy is second-order in wave strength, the energy loss associated 
with first-order scattered waves will have a second-order effect on wave 
structure. 

In developing scattering theory, each of the dependent variables may 
be written as ( ) = ( )%+ ( )T+ ( )w, where ( ) %  denotes the un- 
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disturbed spatial average, ( ) T  the small fluctuations due to turbulence, 
and ( )w the perturbations due to the wave. The turbulent fluctuations 
are taken as constant during the wave passage. The mass and momentum 
equations and entropy conservation can be combined to give for a perfect 
gas (refs. 17 and 18): 

where nonlinear terms in p w r  have been neglected for the present. We 
note that this equation is linear in ( ) T  as well, so we are able to speak 
of scattering of Fourier components of ( )w by Fourier components of the 
inhomogeneity field ( )T.  Defining E as the small parameter character- 
izing the magnitude of ( ) T / (  )w, the solution to equation (1) is ex- 
pressed in terms of a series 

' 

Then it is easy to see that po satisfies the homogeneous wave equation 

and p1 is governed by 

= f ( x ,  t )  (3) 

The truncation of the series after p t  is called the Born approximation. 
One can interpret p1 as waves scattered once by inhomogeneities; pn 
then contains a second scattering from p t  being scattered again as well 
as the energy loss due to the first scattered waves. The solution to 
equation (3) is formally Gven in terms of retarded times by 

where f is a random function of space through its dependence on V T  
and a T ,  which are given statistically. Thus only statistical properties of 
p l ,  such as ( P I ) ,  can be found (( ) denotes the ensemble average). 
Complete treatments for harmonic waves can be found, for example, 
in the monographs by Chernov (ref. 19) and Tatarski (ref. lo), while 
Crow (ref. 18) has treated the case of a step-function incident wave. 
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Although arbitrary values of the diffraction parameter AD/L?j can 
sometimes be handled, in many cases the analyses are carried out for 
large or small values of XD/L$ to simplify the mathematics. 

IMPLICATIONS OF SCATTERING THEORY 

We will next discuss some of the results from harmonic wave scattering 
theory for A -=% Lo to illustrate the influences of inhomogeneity scale, 
wavelength, and propagation distance. As the phenomena are linear 
in the inhomogeneities, we can use results found for special models of 

form exp [- r2 /L5]) .  In the geometric acoustics limit (AD/L$) 4 1, 
the mean-square perturbations can be shown to be (ref. 19, p. 34; ref. 

I turbulence that have essentially one scale (correlation functions of the 

10, p. 148) 
(P?) 8 f i  D3 

€ 2  - -- -- 
IPOI 3 LS (5) 

In this limit the perturbations are essentially due to focusing and de- 
focusing. From equation (5), we see that for a given D the perturbations 
are greater for smaller Ls. (Smaller scale inhomogeneities have a shorter 
focal length.) Of course, we can only consider smaller values of Ls as 
long as  (XD/L$) % 1, indicating that the maximum perturbations will 
be caused by the minimum Ls such that (ADILS) -- 1. Similarly, for the 
opposite case (AD/L$)  9 1, scattering theory for A e LS results in (ref. 
19, p. 75; ref. 10, p. 149) 

where the wave number k= 27r/A. The perturbations from equation (6) 
increase for increases in LS until (ADIL:.) = 1, where the equation is 
invalid. Thus from either case we see that the maximum perturbations 
are caused by inhomogeneities of size Ls  = a. This result is derived 
using an analysis valid for arbitrary hD/Li  in Tatarski’s book (ref. 10, 
secs. 7.4 and 7.6). For sonic booms, A is in the range of 1 to 100 ft and D 
ranges from say one to several thousand feet. Thus we see that Ls’s of 
interest cover the range from 1 ft to thousands of feet, which can include 
both the inertial and energy bearing ranges of atmospheric turbulence. 
For V‘XE less than Lo, the macroscale or integral scale of the turbulence, 
results depend on the details of the spectrum. For a much greater 
than L O ,  results depend primarily on Lo and the turbulent intensity € 2 .  

Equation (6) for (ADIL;.) 9 1 shows that scattering is strongest for 
large k (small A). If we look more closely at the results of scattering 
theory, we find that for A 4 Ls,  the major portion of the energy scattered 
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EXAMPLE OF ANGULAR DISTRIBUTION OF 
SCAlTERED ENERPY 

-r I L ~  
N(r) = 8 I 

FIGURE 10. -Polar plot of energy scattered at angle 0. 

propagates at an angle to the incident wave of 8 = ( A / d s ) .  For example, 
for scattering from sound speed fluctuations with correlation function 
exp [- r*/L%], the energy scattered at an angle 8 to the incident wave’s 
direction is proportional to 

sin 8 exp [- ( z ~ L ~ A - ~  sin !)*I 2 

(ref. 19, sec. 11). This factor is plotted for A=LS in figure 10. We see 
that for A =S Ls, the scattered energy primarily propagates at a small 
angle to the incident wave’s direction. To interpret the physical signifi- 
cance of the scattered perturbations, it is of interest whether the scat- 
tered perturbations are distinct from the remaining incident wave. 
Figure 11 shows a hypothetical example where a “perturbation” that 
initially merely changes the effective location of the incident step func- 
tion propagates at an angle to the incident wave and thus eventually 
lags behind it. It then shows up as a distinct perturbation pulse behind 
the incident wave. To determine when harmonic waves propagating at 
an angle 8 are distinct from an incident harmonic wave, we calculate 
when they have lagged at least one-half wavelength behind the incident 
wave. From figure 12 we obtain D/(cos 8- D) Z= A/2 or for small values 
of 8= AlmLs, ADIL; 2 +. This gives us another view of the difference 
between geometric acoustics and far-field diffraction theory for A e Lo. 
For small ADIL:, the scattered energy stays closely in phase with the 
incident wave acd primarily gives overall aEplitsde P , ~ . c t ~ t I o n s .  For 
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FIGURE 11. -  Distinctness of a pulse propagating at an angle to the incident wave. 

large hDIL;., the scattered energy is out of phase with the incident wave 
and appears as random fluctuations behind it. In this case, the initial 
part of the wave has its energy decreased by that scattered. As this 
damping is stronger for high frequencies, this leads to a smoothing of 
the wave structure and is the origin of shock thickening (refs. 20 to 22). 

As atmospheric turbulence contains a spectrum of inhomogeneities 
ranging down to small fractions of an inch in size, there is always a range 
of inhomogeneities small enough to randomly scatter high-frequency wave 
components. Even accounting for the strong decrease in turbulent 
amplitude with wavelength in the inertial range, it is easy to show that 
scattering to any angle increases with incident wave frequency. Thus 
in experimental measurements, the very high frequencies will not appear 
either in the basic wave or in the perturbations due to strong multiple 
scattering. These multiply scattered waves will have had their propaga- 
tion directions randomized and thus will be left behind the remaining part 
of the incident wave. The highest frequency perturbations will be largely 
those scattered once from the highest frequencies left in the smoothed 
signature shape. 

To calculate how much the incident wave is damped by loss of first 
scattered waves, one can either carry scattering theory to second 
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order (ref. 23) or use an energy balance based on the first-order quantities 
(ref. 19). If the amplitude of the wave traveling in the original direction 
is A ,  then one finds for A Q Lo (refs. 10 and 19) 

where 
(7) 

Comparing with equation (6), we see that when the propagation distance 
is large enough so that ( ( p f ) / l p o 1 2 )  = 1, the original wave is reduced 
to .e-' of its original amplitude. Thus the maximum perturbations that 
can occur are approximately of the order of the incident wave amplitude. 
From equation (7), we also see that the maximum wave number expected 
can be found from CUD z 1 to be 

in the absence of nonlinear steepening effects. 
Bringing these considerations together, we have the following physical 

picture of the effects of inhomogeneities on sonic boom propagation. 
(1) Only the largest scale atmospheric inhomogeneities can result 

in overall geometric focusing and defocusing of N-waves. 
(2) Somewhat smaller scale inhomogeneities can focus and defocus 

the higher frequency components of the wave (parts near the shock), 
but diffraction for ( x D / L % )  3 + makes lower frequency scattered waves 
appear as random perturbations about the N-wave shape. The lowest 
frequencies with (ADIL;) % 1 are only weakly affected and propagate 
essentially unchanged. 

(3) The energy lost in the scattered waves results in a decay in ampli- 
tude of the high-frequency components of the signature that is eventually 
balanced by nonlinear steepening effects. As the signature loses its high- 
frequency components, geometric focusing becomes less important. 

SCATTERED 
WEJ E 
DIRECTION 

WAVE 
DIRECT ION 

F i G G s E  i2.-Fhase iag for distinctness of scaiiered waveb.  



48 SONIC BOOM RESEARCH 

"'\ PARABOLOID 
OF 

DEPENDENCE DEPENDENCE 

X- 
INCIDENT 
WAVE 
DIRECTION 

FIGURE 13. -Locus of points emitting scattered waves to (h,  0). 

(4) As the diffraction parameter AD/L% increases with propagation 
distance or wavelength, there is a progressive shift from geometric 
focusing to diffraction-dominated random perturbations and shock 
thickening. 

(5) Because of the decay of the high-frequency components of the 
original wave, the maximum nondimensional random perturbation can 
be only of order 1. These perturbations will have frequencies of the order 
of the maximum frequencies left in the signature. 

FIRST-ORDER SCATTERING AND PERTURBATIONS 

A complete treatment of the first-order perturbation of a step-function 
model of a shock has been presented by Crow in reference 18. He applied 
the first-order scattering approximation to equation (1) for a discontinuous 
incident wave p o  = Ap,H(x + a , t ) .  He considers the scattered waves 
that arrive at a point a distance h behind the incident shock. Referring 
to figure 13, in cylindrical coordinates x, r, we see that the signal arriving 
from a point that was produced by the shock at time AC will arrive at the 
point ( h ,  0) if x2=  ( U , A ~ ) ~ =  ( x - h ) 2 + r 2 .  Thus the points that have 
radiated perturbations to (h ,  0) lie on the paraboloid 

Crow then shows that the retarded time solution (eq. (4)) is reduced from a 
volume integral to a surface integral over the paraboloid. Then in his 
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solution for p l ,  the maximum effect is felt from inhomogeneities of size 
Ls = 6, which is analogous to the maximum effect from Ls = a 
from harmonic wave theory. Crow shows that his solution includes 
both geometrical acoustics and diffraction phenomena. To be able to 
evaluate (pf) , he assumes 6 ==z Lo, where Lo is the integral scale or 
macroscale. This implies that the eddies contributing most strongly to 

t the scattering lie in the inertial range of the turbulence. This assumption 
1 allows him to evaluate the solution assuming a Kolmogorov inertial 
i range and allowing variation of turbulent dissipation with height. He 
' obtains the final result i 

where A is a constant and kY(x) is the turbulent dissipation. For any 
particular kY(n) defined over a finite thickness layer, this reduces to 

where h, is a length depending on the parameters characterizing the 
turbulent layer through which the step function has propagated. 

As these results do not account for thickening of the shock, the 
perturbations become very large directly behind the shock. Outside of 

t this region, however, the agreement with experiment is quite satisfactory 
within the limits of uncertainty of knowledge of the atmospheric turbu- 
lence and the accuracy of experimental evidence for ( p ; ) .  

SECOND-ORDER EFFECTS AND SHOCK THICKENING 

Crow's theory is linear. Thus the perturbations due to PO'S that are 
different from the step-function incident wave that he treated can be 
obtained by superposition. As shown in references 20 to 22, the turbulent 
medium can be considered as a series of layers in which the incident 
PO on each layer is the thickened wave emerging from the previous layer. 
For a step function passing through a given layer, equation (8) gives 

or 
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Now if the incident wave is given by p o ( 5 ,  x), where t=x -a , t ,  then 
using a convolution and 

(ref. 21), one obtains 

Squaring and integrating to account for all layers, we have 

which gives an upper bound for the mean-square perturbations account- 
ing for a varying po. 

At this point however an important question still must be discussed: 
What is a proper definition of pu to use in equation (9)? A mathematically 
convenient choice would be ( p ) ,  the ensemble average of the wave shape. 
If n are integers that characterize the particular realizations of the 
turbulence, then in terms of the individual deterministic solutions 
p ( 5 ,  x; n )  the ensemble average is defined as 

1 N  

However, as is seen with the aid of figure 14, the ensemble average is 
unsatisfactory for our purposes. The figure shows an ensemble of slightly 
thickened waves, each having propagated to slightly different positions 
at the given time due to randomly varying propagation speed. The 
ensemble average then shows a wave with an apparent extra thickness 
due only to the different positions of the individual waves. Consider 
the case where any particular wave is given by p ( 5 ,  X ;  n )  = p o ( 5  + ~ ( n ) ,  
x),  where ~ ( n )  is a random variable with zero ensemble average. Then 
if E is sufficiently small, w e  can write 

and taking the ensemble average 
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FIGURE 14. -Example of ensemble average for slightly thickened shocks. 

showing a fictitious “thickening” of the (p) structure. Clearly this extra 
thickening is not related to the characteristics of any individually meas- 
ured wave (given n). Also it is clear that the perturbations scattered for 
any given n will not depend on (p) but rather p ( 8 ,  x ;  n). In particular, 
(p) contains significantly less high-frequency energy than a particular 
p ( 6 ,  x ;  n),  and the high frequencies are the most strongly scattered. 
Thus we need a more suitable choice for p o ( e ,  x). 

A suitable choice for po has been analyzed in references 20 to 22. The 
analyses include both the second-order energy loss due to scattering 
and the counteracting effect of nonlinear steepening. The wave quantities 
are expanded in two small parameters: E, the strength of the inhomogene- 
ities, and 6, the incident wave strength giving 

p w = 6 p l o + 6 € p 1 * + ~ ~ p , o + ~ € ~ p 1 2  + . . . 
The terms on the right-hand side represent, respectively, the incident 
wave, first scattering, lowest order nonlinear steepening, and second- 
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order scattering including energy lost in pl. The series truncation requires 
S2 e 8, and to keep nonlinear effects from letting a significant portion 
of the scattered energy catch back up with the shock, S 4 (k,,,axLo)-2. 
To consider the wave shape without the effects of the random fluctua- 
tions, the wave is treated after subtracting the first scattered perturba- 
tions. Thus an approximate equation for P=pW-- S ~ p l l  is derived using 
the concept of a series of layers of turbulence. For P to correspond to 
the measured wave shape and thickness, the first scattered waves that 
are not included in P must have propagated far enough to have become 
distinct as discussed previously. Thus for predicting shock thicknesses 
or rise times, it is required that (ADIL;) P 1, which is only valid for long 
distance propagation through turbulence. However, for predicting the 
first-order perturbations, P can always be used. This is because, to 
second-order in E ,  P corresponds to the part of the wave propagating in the 
original direction. The S E P ~ ~ ,  which has been subtracted to get P ,  has 
already been counted as  scattered perturbations, and any rescattering 
of it should not be counted again. Rescattering can only serve to reduce 
the total scattered waves propagating along following the initial front as 
discussed previously. (The case when this reduction is important is 
discussed by K. J. Plotkin in these proceedings.)' Thus P is a satisfactory 
estimate for p o ( t ,  x) in equation (9) for calculating the first-order per- 
turbations due to turbulence. 

For conditions typical of weak sonic booms propagating through 
locally homogeneous isotropic turbulence, the wave structure P has 
been shown (refs. 20 to 22) to be governed by the Burgers' equation: 

where €2  and Lo can be slowly varying with x (compared to Lo). The 
dissipative second-derivative scattering term is typically much larger 
than the analogous viscous dissipation term that could be included. This 
is because much more energy is scattered out of the incident wave's 
direction than is converted directly into heat. 

In the case of EZLO = constant, both unsteady and steady (equilibrium) 
solutions of this equation can be easily obtained. Using rough estimates 
for € 2  and Lo, the results give shock thicknesses agreeing with those 
observed for sonic boom and weak explosion waves within the wide 
limits of uncertainty characterizing the atmospheric and thickness data. 
Figure 15 taken from reference 21 compares various sonic boom and 
explosion wave thicknesses to the theory. Using the P solutions as P O  

See p. 59. 
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FIGURE 15.-Comparison of calculated shock thicknesses T to range of various sonic 
boom and explosion measurements. 

in equation (9) gives results for ( p : )  that are also quite reasonable: 
although it is difficult to make precise comparisons with experiments. 

The conclusions of the analysis that the high-frequency wave 
components are strongly and multiply scattered into random directions 
and eventually left behind is in accordance with the high-frequency 
decay observed in power spectral density measurements of sonic booms 
(refs. 7 and 13). For example, Young et al. in annex F of reference 13 
have shown that there is an observed change from a 6- to a lZ-dB/octave 
rolloff in energy spectral density above the frequency associated with 
the observed shock thicknesses (rise times). The model experiments of 
Bauer and Bagley (ref. 24) also help to verify various features of the 
model. For example, the shadowgraphs shown in figures B9 and B10 of 
their report clearly show the lagging scattered waves originating from a 
limited region of turbulent scattering. The associated pressure meas- 
iirements show the resulting shock thickening as well. For waves 
passing through more extended turbulence, they conciude that their 
shadowgraphs only registered features associated with wrinkles on the 
nominally conical shock fronts. However, their pressure measurements 
clearly show the scattered waves in this case as well. 

A quite different analysis has been proposed by Pierce to explain 
shock thickening (ref. 251, He hases his analysis on the behavior pre- 

420-093 0 - 71 - 5 
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FIGURE 16. -Sketch of phenomena for wavefront passing through a focus. 

dicted by geometric acoustics for wavefronts passing through a focus. 
As shown in figure 16, an initially concave portion of a geometric acoustic 
front will eventually focus and form a so-called “folded” front. However, 
we note that geometric acoustics applies only for the wave number 
k+ w and that for finite k, diffraction should be accounted for. We thus 
consider the wave pattern after a long distance of propagation and see 
the picture as sketched on the far right of the figure. For (hL)/Li) 1, 
the geometric acoustics result would be valid and we find that the fronts 
AB, BC, and C D  locate the high-frequency portions of the energy originally 
in the portion of the front AD.  Because these fronts are convex, their 
ray tube areas have greatly increased and the strength of these fronts is, 
therefore, small. Meanwhile, for the low-frequency wave components 
with (hL)/Lg) %= 1, diffraction effects will have filled in the “shadow” 
A D  (shown as a dashed line). Thus we see that at some distance from a 
focus, the wave system will consist of a thickened wave A D  made up of 
the lower frequency wave components followed by geometrically at- 
tenuated high-frequency scattered waves. This picture agrees with the 
more detailed picture supplied by scattering theory (which treats 
intermediate values of XL)/L$ as well). 

Pierce, however, bases his analysis only on the high-frequency 
geometric acoustics limit. He ignores all diffraction effects and con- 
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structs a heuristic model of many shocks arriving at random times. 
He constructs his assumed solution to include the parameter tc = hc/ura 
used by Crow. This is done by forcing the assumed solution to have 
certain similarities to Crow’s scattering solution. After an involved 
analysis, he predicts waves made up of a multitude of “microshocks.” 
His predictions of rise times of the order oft, are not surprising because 
the assumed solution was constructed in such a manner as to contain 
tc.  Experimental evidence shows no evidence of microshocks in the shock 
structure, and the 12-dB/octave decay of high-frequency spectral energy 
density also implies they are not present. The analysis used an in- 
complete model for wave propagation and is based on a large number of 
tenuous approximations, as the author himself points out (ref. 25). 
As both the phenomena treated in the model as well as those left out are 
included in the more comprehensive scattering theory, there seems to be 
little incentive to refine further the “microshock” approach. 

CONCLUSIONS 

The mechanisms by which atmospheric irregularities distort sonic 
boom signatures from the stratified atmosphere predictions are individ- 
ually reasonably well understood, at least on a semiquantitative basis. 
Precise predictions are still far from our grasp because of both lack of 
knowledge of atmospheric structure and some approximations in the 
available analyses. However, approximate predictions based on estimated 
atmospheric structures should be possible with some further develop- 
ment. 

Geometric acoustics calculations can be carried out in a straight- 
forward manner if the large-scale inhomogeneity structure is known; 
however, the large-scale structure is perhaps the least well known. For 
smaller scale inhomogeneities, if the turbulent structure can be ap- 
proximated as isotropic and locally homogeneous, then Crow’s theory 
with modifications for finite LO and multiple scattering can be applied. 
The value of po is taken as P, which can be found by solving the Burgers’ 
equation (9) with slow spatial variation of e2L0 where appropriate. The 
shock thickness is predicted by P only if the scattered waves are distinct; 
i.e., for (AD/L:) S- 1. 

For predictions of annoyance due to sonic booms it wodd also be 
desirable to be able to predict probability distributions and their depend- 
ence on atmospheric conditions for quantities such as PI,  Tne avail- 
able experimental distributions are averages over a variety of atmospheric 
conditions. No analyses have yet grappled with this problem, and prob- 
ability data for atmospheric turbulence are even less accessible than 
statistical data. However, some effort should be expended in this direc- 
tion because of its importance. 
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Perturbations Behind Thickened Shock Waves 

KENNETH J. PLOTKIN 
Cornell University 

One of the most significant effects of turbulence on sonic boom 
signatures is the appearance of random spikes and wiggles behind the 
shock waves. The maximum of these spikes generally appears immedi- 
ately behind the shock and may be positive or negative. This may be 
considered to represent a variation in the shock overpressure, which is 
psychologically one of the most important factors in annoyance. It has 
been pointed out by Ferri that some acceptable overpressure should be 
determined from psychoacoustic studies and that supersonic transports 
be designed within the constraint of such a limit.' A means of predicting 
the range of variation in shock overpressure due to meteorological 
conditions is necessary so that this variation can be accounted for in 
setting this constraint. 

FIRST-ORDER SCAlTERING 

The first successful attempt at predicting the perturbations due to 
turbulence was performed by Crow (refs. 1 and 2). He applied first-order 
acoustic scattering theory (refs. 3 to 6), modeling the shock wave as a 
step-function acoustic wave. 

Scattering theory is a perturbation scheme in which E ,  the strength of 
the turbulence, is the expansion parameter. A solution is sought in the 
form 

p = p " + € p , + € * p 2 +  * . * (1) 

The term po is the incident wave and satisfies the mean conditions. The 
term E J ~ I  represents first-order scattered waves. Truncating the series 
at this point is called the Born approximation. In principle, the scheme 
may be carried through to higher orders. 

The use of 2 step-function incident Wave l ead  io delta fiinctinns 
in the usual retarded time integral (ref. 7) for the scattered waves so 
that the volume integral collapses into a surface integral. The physical 
meaning of the retarded time integral is that a scattered wave is emitted 
only as the incident wave passes an element of turbulence. An observer 

1 See p. 255. 
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FIGURE 1.-Paraboloid of dependence. 

at a given time “sees” a point on the scattering surface, which is equi- 
distant from the observer and the shock front. The surface is thus a 
paraboloid of revolution with the observation point its focus and the 
shock front its directrix. Crow’s paraboloid of dependence is illustrated 
in figure 1. After making several quite reasonable simplifying approxi- 
mations, he obtained an expression for the mean-square perturbations, 
which may be expressed as 

where x and R are as shown in figure 1, and F ( R )  represents an integral 
over a cylinder of radius R locally fitted to the paraboloid. This integral 
contains the statistical properties of the turbulence. For turbulence of 
the form of the Kolmogorov inertial subrange (refs. 4 and 8), F ( R )  0: R2I3 
and equation (2) takes the form 
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i /  6 
= (2)  (3)  

(eq. (6.3) of ref. 1 and eq. (7.3) of ref. 2) where A is a constant (A = 0.383 
for thermal scattering) and 8 ( x )  is the turbulent dissipation function. 
This form is only valid when the diameter of the paraboloid is within the 
inertial subrange. Because the paraboloid grows with x, this means that 
equation (3) applies only for a finite layer of turbulence. Crow calculated 
hc for a reasonable model of a finite turbulent atmospheric boundary 
layer and found that h~ was on the order of 1 ft. This gives reasonably 
good agreement between equation (3) and observed perturbations, except 
close to the shock front, where equation (3) predicts infinite perturbations. 

The unreasonably large perturbations near the shock predicted by 
Crow's analysis are due to the modeling of the shock as a step function. 
A step contains very-high-frequency components, which are very 
strongly scattered in the forward direction. A shock with finite thickness 
may be divided into many infinitesimal steps with equation (3) applied 
to each, and the perturbations from each superposed. The upper bound 
for the root-mean-square perturbations is then given by a convolution 
integral over the shock thickness with equation (3) as the kernel (ref. 9). 
As long as the slope of the shock structure is finite, the maximum 
perturbations are finite. For example, figure 2 shows the upper bound 
of ( ( ~ p l / A p ) ~ ) l / ~  for a possible thickened shock of thickness T =  hc 
and (hc,/h) 

1 

1 

for a step (ref. 10). 

PERTURBATIONS BEHIND A STEADY SHOCK 

The structure of a weak shock wave in a turbulent medium is governed 
by a balance between nonlinear steepening and a dissipative mechanism 
based on energy being scattered out of the incident wave direction by 
turbulence (refs. 9 to 11). Under conditions representative of weak sonic 
booms propagating through locally homogeneous isotropic turbulence, 
the shock structure is governed by the following Burgers' equation: 

where P is the wave structure with first scattered waves removed, a, and 
pCa  are mean ambient sound speed and pressure, x is the wave fixed 
coordinate, c2 is the turbulent intensity, and Lo is the turbulent macro- 
scale length. This equation predicts a steady-state shock structure for 
long propagation distances through turbulence. This i s  an important 
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FIGURE 2. -Root-mean-square perturbations for a thickened shock of thickness T=hc 
and ( h ~ / h )  ''I2. 

case, as it corresponds to sonic booms near cutoff, conditions of high- 
altitude atmospheric turbulence, and blast waves from explosions near 
ground level. It is therefore desirable to calculate the perturbations 
behind a steady thickened shock. This means applying equation (2) to 
an unbounded region of turbulence. 

The integral represented by F ( R )  is proportional to R 2 / 3  only for the 
diameter 2R of the paraboloid less than the correlation length (maximum 
eddy size) 3 0 .  (-F0 = 8 LO for turbulence obeying the Kolmogorov 
3-power law in the inertial subrange.) For 2R 9 2'0, it can be shown that 
F ( R )  - constant. For homogeneous turbulence, then, equation (2) may 
be approximated (ref. 10) as 

where A and S are as defined previously and C is a constant. 

for homogeneous turbulence, and C = e2 for thermal scattering.) 
It is clear that equation (5) predicts infinite perturbations everywhere 

for an infinite layer of turbulence. This is due to the failure of the Born 
approximation for long distances. Physically, scattered waves are 
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scattered many times until their propagation direction is completely 
randomized and they are left behind. As a first approximation, this may 
be allowed for in equation (5) by noting that a wave decays exponentially 
with distance due to scattering (refs. 10 and 12). A decay factor e-Bx is 
thus used in the integrals in equation (5), where p is the decay coefficient. 
For conditions corresponding to those for which the Burgers’ equation 
(eq. (4)) is applicable, 

/3 = 2e2L0k2 (6) 

where k is the wave number of the incident wave. The question of 
distinctness of scattered waves, as  discussed in references 10 and 11, 
is not considered here. Equation (5) gives the scattered waves in terms of 
the location h at which they are observed and the location x from which 
they are scattered, not in terms of k. It is necessary to examine the 
frequency spectrum of the scattered waves at  h from x to estimate 
/3 as a function of x and h for use in equation (5). 

The angular distribution of scattered energy from a single component 
harmonic wave by isotropic turbulence (refs. 3 and 4) is 

( 1 p 1 I ~ ) m  k 4 E ( 2 k s i n z )  (7) 

where E is the three-dimensional turbulence spectrum and 8 is the 
scattering angle. This formula has been experimentally confirmed for 
small angles (refs. 13 and 14), which are of interest here. By considering 
the energy spectrum of the step-function acoustic wave, the spectrum 
of first scattered waves scattered at an angle 8 (ref. 10) is 

where a1 and a2 are constants. The scattering angle 19 may be matched 
to the geometry of the paraboloid of dependence to give equation (8) as 
a function of h and x. As a simplifying assumption so that /3 will be a 
function of x and h only, /3 is based on k, where k is a median value such 
that half the energy in equation (8) is for k < k and half is fork > k. This 
gives (ref. 10) 
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Using equation (9) for the decay correction to equation (5) ,  

This expression has asymptotic (ref. 10) behavior: 

It is seen that the perturbations depend on the factor E ~ / ~ L ~ ,  while 
shock thickness from equation (4) depends on the factor €*LO. Shock 
thickness and the perturbations thus depend on the turbulent parameters 
in different ways. 

Figure 3 shows the upper bound for the maximum root-mean-square 
perturbations behind a steady thickened shock whose structure is 
governed by the Burgers' equation (eq. (4)) for a range of €2 typical of 
atmospheric turbulence. The curves are based on equations ( l l a )  and 
( l l b )  and are shown solid where these approximate forms are applicable 
and dashed otherwise. A calculation based on equation (10) would fall 
between the two curves. It is interesting that the maximum perturbation 
varies little with E* over this range, which is consistent with much of the 
experimental data. For very small E * ,  the approximation used for p 
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FIGURE 3. -Upper bound for maximum root-mean-square perturbations behind a shock. 
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FIGURE 4. -Root-mean-square perturbations on an N-wave. 

here based on k is not expected to be valid, and the maximum perturba- 
tion goes to zero as e2 goes to zero (ref. 10). 

Figure 4 shows envelopes of perturbations on a 200-ft N-wave with 
Ap/pp = 0.5 X and LO= 100 ft for e2= IO-' and The change in 
the envelopes is relatively small, with the maximum perturbation almost 
identical for both cases. 

CONCLUSIONS 

It has been shown that the perturbations behind a steady shock wave 
in a turbulent medium have a finite maximum near the shock front and 
that this maximum is of the same order as  the shock overpressure. The 
calculation was based on the decay of first scattered waves through 
further scattering. A number of approximations were employed, the most 
serious being that the question of the distinctness of the multiply scat- 
tered waves, as discussed in detail in references 10 and 11, was not 
considered. However, it is felt that the present calculation provides a 
reasonably good estimate of the physical situation. The maximum per- 
turbations immediately behind the shock were found to vary only moder- 
ately with turbulent intensity, which is consistent with much experimental 
data. 

The shock thickness has previously been shown to depend on the 
factor e2LO, so that measurement of shock thickness should provide a 
good indication of the intensity of the turbuleiice if LO is known. The 
envelopes of the perturbations were shown here to depend on d3LOand 
therefore reflect mainly the scale of the turbulence. With further refine- 
ment of this theory, it is possible that the measurement of perturbations 
and shock thicknesses may be a useful diagnostic technique in the deter- 
mination of the form of atmospheric turbulence. 
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It appears at this point that the theory for the perturbations on N-waves 
due to turbulence is fairly well understood, if not worked out in complete 
detail. What is lacking is a good understanding of atmospheric turbu- 
lence. If the connection between atmospheric turbulence and the usual 
meteorological measurements could be made accurately, then the varia- 
bility of sonic boom signatures could be predicted in terms of meteorologi- 
cal measurements and predictions. 

REFERENCES 

1. CROW, S. C.: Distortion of Sonic Bangs by Atmospheric Turbulence. NPL Aero Rept. 

2. CROW, S. C.: Distortion of Sonic Bangs by Atmospheric Turbulence. J. Fluid Mech., 

3. CHERNOV, L. A.: Wave Propagation in a Random Medium. McGraw-Hill Book Co., 

4. TATARSKI, V. I.: Wave Propagation in a Turbulent Medium. Dover Pub., Inc., 1%1. 
5. BATCHELOR, G. K.: Wave Scattering by Turbulence. Symp. Naval Hydrodyn., Nat. 

Acad. Sci.-Nat. Res. Counc. Pub. 515, 1957. 
6. LIGHTHILL, M. J.: On the Energy Scattered from the Interaction of Turbulence with 

Sound or Shock Waves. Proc. Cambridge Phil. SOC., vol. 49,1953, pp. 531-551. 
7. BORN, M.; AND WOLF, E.: Principles of Optics. Second ed., The  MacmiUan Co., 1964. 
8. LIN, C. C.: Statistical Theories of Turbulence. Princeton Univ. Press, 1951. 
9. PLOTKIN, K. J.; AND GEORGE, A. R.: Weak Shock Waves in Turbulent Media. AIAA 

Paper  No. 70-54, 1970. 
10. PLOTKIN, K. J.: The Effect of Atmospheric Inhomogeneities on the Sonic Boom. Ph. D. 

thesis, Cornell Univ., 1971. 
11. GEORGE, A. R.; AND PLOTKIN, K. J.: Propagation of Sonic Booms and Other Weak 

Nonlinear Waves Through Turbulence. Phys. Fluids, vol. 14, 1971, pp. 548-554. 
12. KELLER, J.  B.: Wave Propagation in Random Media. Hydrodyn. Instabil., Proc. Symp. 

Appl. Math. 13th, 1962, pp. 227-246. 
13. KALLISTRATOVA, M. A.: An Experimental Investigation Into the Scattering of Sound in 

a Turbulent Atmosphere. Acad. Dokl. Sci. USSR Earth Sci. Sect., vol. 125, 1959, pp. 
314316.  

14. KALLISTRATOVA, M. A.; AND TATARSKI, V. I.: Accounting for Wind Turbulence in 
the Calculation of Sound Scattering in the Atmosphere. Soviet Phys. Acoust., vol. 
6, 1%0, pp. 503-504. 

1260, 1968. 

vol. 37, 1%9, pp. 529-563. 

Inc., 1960. Also Dover Pub., Inc., 1967. 



Analysis of the Multiple Scattering of Shock Waves by a 
Turbulent Atmosphere 

W. J. COLE 
Columbia University and Bell Telephone Laboratories 

M. B. FRIEDMAN 
Columbia University 

AND 

Experimental observations of sonic boom pressure signatures exhibit 
random fluctuations superimposed on the basic N-shape pattern. In 
addition, a thickening of the shock front is observed that is many orders 
of magnitude larger than can be attributed to viscosity effects. Crow 
(ref. 1) has shown that the presence of the fluctuations can be explained 
by a first-order theory of turbulent scattering applied to a plane shock. 
However, his prediction of their intensity is unrealistically large in the 
neighborhood of the shock fronts (e.g., infinite at the front) and his 
single scattering analysis is incapable of predicting any shock thickening. 

Plotkin and George (ref. 2) have shown that shock thickening can be 
attributed to higher order scattering effects. They recognize the impor- 
tance of this thickening in producing finite values for the intensity of the 
fluctuations near the shock front, but the modified form of perturbation 
analysis they employ does not allow for a direct determination of the 
intensity. Their procedure for obtaining an upper bound on the fluctua- 
tion intensity does not take into account the continuously thickened 
nature of the plane shock profile as it propagates through the turbulent 
medium; i.e., they use Crow’s first-order scattering theory for the 
fluctuation intensity as it applies to an arbitrary initial shock profile, 
but they substitute the final thickened shock profile computed from their 
shock thickening theory. Within the context of Crow’s theory, Plotkin 
and George’s intensity calculation is equivalent to assuming that the 
observed fluctuations are caused by scattering from this final thickened 
profile instead of the actuai continuousiy thickened shock profile. 

In this paper, it is shown that the shock thickening can be derived 
within the framework of a nonperturbative multiple-scattering theory 
that avoids the “several” hypothesis used in reference 2, and, most 
importantly, provides for a direct evaluation of the fluctuation intensity. 
This procedure inherently incorporates the coupling between the in- 
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tensity of the fluctuations and the continuously thickened shock profile. 
This more general analysis predicts values for the fluctuation intensity 
that are an order of magnitude smaller 1 than those predicted in reference 
2 for a given set of turbulence parameters. In addition, the nature of the 
analysis permits the treatment of more general wave configurations. 

The analysis is based on the method of “smoothing” previously used 
by Frisch (ref. 3) in studying the multiple scattering of single-frequency 
waves. In the course of this research, an effort has been made to study 
the accuracy of this method by utilizing a Monte Carlo computer experi- 
ment described in reference 4. The one-dimensional Helmholtz equation 
with a particular class of random functions describing the phase velocity 
was treated in this experiment. A comparison of the approximate solution 
obtained using the smoothing method and an “exact” numerical solution 
showed the smoothing method predicts accurately the behavior of high 
frequencies, whereas the single-scattering approximation of the type 
employed by Crow develops inaccuracies at  high frequencies. Because 
a sonic boom has a considerable amount of high-frequency content, it is 
apparent that Crow’s theory for the intensity is inadequate near the 
shock front; one has confidence, however, that the smoothing method 
will accurately predict the intensity uniformly both away from and, more 
importantly, at the front. 

The properties of the atmosphere depend in a complicated way on 
both position and time. As a consequence, the propagation of an acoustic 
wave is effected by scattering from the local variations in the medium 
properties. The complexity of these variations makes it difficult to analyze 
these effects in a direct way and is of little interest even if it could be 
obtained because the behavior of the wave would be different at a 
neighboring point. Consequently, only the statistical properties of the 
wave as  a function of the statistical properties of the random medium 
are of interest. 

As a result, the mathematical concept of a random medium is intro- 
duced. A random medium is an ensemble of media, each designated by a 
parameter o together with a probability distribution p ( w )  . The study 
of wave propagation in a turbulent medium leads, in general, to a family 
of partial differential equations: 

where Lo is a deterministic operator, V1 ( w ;  x, t) is the random operator 
depending on the parameter w that characterizes the effects of turbulence 

This conclusion is based on the assumption that h,= T as stated in reference 2. In a 
private communication, the authors indicate that h, can be considerably smaller than T 
so that their result can, in some cases, be smaller than those presented here. 
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in scattering the wave, L1 and L,  are deterministic linear operators that 
describe the nonlinear steepening of the wave, and u ( w )  is the random 
solution field. The average or mean value of u is defined by 

(2) 

The smoothing method involves the separation of the solution field 
into its coherent and incoherent (fluctuating) parts, 

u ( w ;  2, t )  = uc(x, t )  + U i ( W  &, t )  
where 

u , = ( u ( w ) )  =Pu coherent field 

ui = u (0) - uc = ( I  - P )  u (3) 

where P = ( ) denotes the ensemble-averaging operation in equation (2). 
Substituting equation (3) in equation (l), averaging, and assuming 

( VI) = 0 results in 

incoherent field 

I 
u,=-L<'P(  Vlui) L1 (uc)LP( uc) + P[LI ( u i ) L (  ~ i ) ] }  (4) 

Subtracting equation (4) from equation (1) gives 

The first-order smoothing approximation is equivalent to assuming that 
the second and third terms in equation (5) are small compared to the 
first. This implies that the principal contribution to the fluctuations is 
the single scattering of the coherent field instead of the incident undis- 
torted field, as assumed by Crow. As a result, 

Substituting equation (6) into equation (4) and assumingP[Ll (ui)Lz ( u i ) ]  
to be negligible yields 

To apply the above scattering theory to the sonic boom problem, it is 
assumed that the turbulence that distorts the sonic boom N-wave is 
concentrated in the 3000-ft boundary layer near the ground. It is further 
assumed that the shock front is essentially planar and that the scattering 
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experienced by the shock is associated with the sharp pressure rise 
across the shock and is insensitive to the rate of expansion behind the 
shock so that only a step-function shock need be considered. Therefore, 
the canonical problem of interest is a plane step shock incident on a 
random half space z > 0,  with uniform statistical properties. For this 
canonical problem, the equation satisfied by the coherent field is 

and that satisfied by the incoherent field is 

where ( p s )  is the coherent acoustic fluid density, 6 p s = p s - ( p s ) ,  and 

The term 213 is the component of the turbulent velocity fluctuations in the 
direction of the normal to the wavefront and cn is the fluctuation in the 
sound speed due to temperature inhomogeneities. Solving equation 
(9) for ps and substituting into equation (8) gives an equation for the 
coherent density analogous to equation (7). Under the assumption of 
small shock thickness compared to the turbulent correlation length, 
this nonlinear integro-differential equation for the coherent field reduces 
to the Burgers' equation: 

where 

and l o  is the correlation length of the turbulence. This equation is similar 
to that in reference 2 except the derivation is direct from first principles 
and does not require additional heuristic arguments. For an initial step- 
function shock, ( p s )  ( z = O ,  t )  = ( A p ) H ( t ) ,  the solution of this Burgers' 
equation is obtained using the results of J. D. Cole (ref. 5). When the 
inequality [ ( A P ) ~ ~ ]  (4pg10n2)-1 < 0.1 is satisfied (a condition obtained 
for most sonic boom shock strengths of interest and for most parameter 
values that model atmospheric turbulence), this exact nonlinear solution 
reduces to the linear solution 
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cot -z 

The coherent shock front, then, is increasingly smoothed out as a func- 
tion of the propagation distance z, with ( p s )  (5, t )  approaching (Ap) for 

The intensity of the fluctuations is evaluated using equation (9) in 
conjunction with the solution for the coherent field in equation (lo), 
which has been approximated by equation (11) under the above restric- 
tion. The resulting expression is 

[cot -21 > V G G .  

d/4n210y3 

The incoherent field 6ps represents the difference between the observed 
or measured realization and the coherent field, which travels at the 
average speed of sound co and arrives at the observer located at a 
distance z into the random medium at time t=z/co.  Each realization 
arrives at a slightly different time because of the turbulence. The 
“phase shift” (see ref. 1) of each realization is accounted for by integral 
(I) in equation (12), whereas the actual fluctuations caused by scattering 
in the neighborhood of Crow’s paraboloid of dependence (obtained by 
setting the argument of the exponential equal to zero) is given in integral 
(11). This decomposition permits the calculation of the intensity of the 
observed fluctuations. For the step-function shock considered above, 
the incoherent intensity was evaluated using the Kolmogorov turbulence 
model. The determination of this intensity reduces, after a series of 
reasonable assumptions, to the evaluation of a complicated integral 
a!mg the axis of Crow’s paraboloid of dependence. This imegral can be 
computed accurately using numerical integration techniques. For values 
of t such that (= (cot - z )  > m, this integral reduces to the result 
of Crow: 

( SP!) = (Ap)’  (hc/5)7’6 
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where h, is proportional to z, 6, and the parameter I=co' ((3,) 
+ - 3 (ce) 2 )  for the case of a turbulent medium with uniform statistical 

22 
properties. The effect of the continuously thickened coherent shock pro- 
file manifests itself for t<  s as illustrated in figure 1, where the 
intensity is plotted as  a function of 7 = t - z/co for three different values of 
I. The intensity becomes a continuous function of 6, attaining a maximum 
value at some > O  and then merging with Crow's result for 
8 > -> &. The maximum value predicted by Plotkin and Gewge 
(ref. 2) is an order of magnitude larger (see ref. 1) than the results pre- 
sented in figure 1, so that the continuously thickened nature of the shock 
profile has a significant effect on the predicted fluctuation intensity. In 
addition, figure 2 illustrates the fluctuation intensity as a function of time 
for three different turbulence correlation lengths. It appears that the 
intensity is much more sensitive to the local correlation length than to the 
turbulence fluctuation intensity. 

An important aspect of the above theory is the decomposition of each 
realization u ( w )  of the solution field into its coherent and incoherent 
parts. It is of interest to determine whether the characteristics of each 
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FIGURE 1.-Fluctuation intensity plotted as  a function of 7 for three different values of 
I .  Z = u ; / c % + ( 3 / 2 2 ) ( ( T 2 ) / ~ ~ ) ,  10=50 rn,z=1000 m , a n d ~ = t - z / c o .  
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TIME, SEC 

FIGURE 2. -Fluctuation intensity plotted as a function of time for three different turbulence 
correlation lengths. z= lo00 m, 1=2.5  X lo+, and T = C - Z / C O .  

measured sonic boom pressure signature is described by the correspond- 
ing thickened coherent shock profile and the predicted fluctuation in- 
tensity. The ensemble-averaging formulation considered above does not 
introduce any increased thickening of the shock profile that is not re- 
lated to the scattering of energy out of the wave. Keller (ref. 6) computes 
the propagation constant of a single-frequency wave based on an energy 
conservation analysis of the type employed by Plotkin and George (ref. 
2) and also by using the first-order smoothing approximation. He obtains 
the same result by each approach. Because the linear version of equa- 
tions (8) and (9) could be solved by using a superposition of all of the 
frequency components in the initial shock wave, it is clear then that the 
smoothing method should yield exactly the same shock thickening as 
that predicted by the energy conservation analysis in reference 2 as  is 
apparent from the derivation of equation (10). Furthermore, in the deter- 
mination of the incoherent field, it was possible to separate the phase- 
shift contribution (which is not measured in practice) and the actual 
measured fluctuation contribution. Consequently, the ensemble average 
or smoothing approach should yield accurate estimates of actual meas- 
ured shock thickening and fluctuation intensities. 

The influence of more realistic nonhomogeneous turbulence models 
on the magnitude of the fluctuation intensity is being investigated 
by an application of the techniques described above. In addition, because 
pressure signatures can differ significantly from N -shapes particularly 
near focal points, some analysis of the effect of turbulence on more gen- 
eral waveforms is also being considered. 
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' Uniform Wavefront Expansions for Diffracted and Focusing 
Waves 

M. K. MYERS 
' Columbia University 

The general objective of the present research is to develop theoretical 
descriptions of the propagation of shock waves in certain types of 
multidimensional problems of interest to sonic boom technology. In 
particular, the effort centers on two classes of problems: the first in- 
cludes problems with diffracted wave systems; the second comprises 
problems involving focusing of waves. In each class, the dominant 
feature is the existence of a singularity in the surface forming the wave- 
front of the disturbance field calculated from a linearized theory. For 
problems involving diffraction, the wave surface is formed by two or 
more segments tangent to one another along curves analogous to shadow 
boundaries in optical diffraction problems. In the focusing case, the 
wavefront is cusped, and the surface traced by the cusp on the wave- 
front is a caustic of the associated system of rays. 

The fundamental objective of determination of shock waves in these 
problems is approached in two separate stages. The first stage, which 
underlies the entire study. consists of determining satisfactory approxi- 
mations to the linearized solution of problems of interest, especially 
in the vicinity of the linear wavefronts. While the linear solutions are 
easily written in exact form as integral expressions, these are generally 
too complex to be useful in practice. Hence, it is valuable to seek asymp- 
totic approximations to the linear solutions valid near the wavefront 
appropriate to the problem being studied. A satisfactory approximation 
is one free of anomalous singularities that arise as  a result of the process 
of approximation and that generally exist neither in the full linear solu- 
tion nor in the exact solution to the problem. 

The second stage of the study is to develop methods, analogous to 
those of Lighthill and Whitham, that correct the linearized solution by 
means of a straining of coordinates to yield a first approximation to the 
exact solution to the problem. The appropriate straining of coordinates 
required in a given problem is determined largely by the behavior of 
the linear solution near its wavefronts; i.e., by the information obtained 
in the first stage of the study described abeue. The present discussion 

' 
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is confined to the first, or linear, stage of the work. Progress in appli- 
cation of the linearized results to the determination of nonlinear effects 
is described in the paper by Friedman and Davis.' 

Any attempt to generalize the available methods for correcting linear 
solutions to include a first approximation to nonlinear effects must begin 
with a clarification both of the asymptotic nature of the Whitham theory 
relative to exact solutions and of the asymptotic nature of the approxi- 
mate linear results used as input for the process relative to corresponding 
complete linear solutions. It is therefore important to examine the de- 
tailed structure of the linear potential fields for various problems of the 
two types indicated previously. Especially important is a study of the 
nature and mode of propagation of the singularities on the wavefronts 
of the fields because the subsequent generalization to nonlinear effects 
depends heavily upon the construction of a set of equations of motion 
in which the separate terms are known to be nonsingular throughout the 
field. The independent variables in which such equations must be written 
are suggested by the results of a linearized analysis. 

SINGLE W A V E  SYSTEMS: PROGRESSING W A V E  THEORY 

We review briefly the asymptotic form of linearized fields near wave- 
fronts in cases in which a single wave system is propagating. In general, 
the linearized potential in such cases can be explained in a progressing 
wave of the form cp=x ~ " ( r ,  s ) F n ( T )  ( 1 )  

where the F are subjected to the condition 

-- - F "  dF n+l  

dT 

The expansion (1) is expressible in terms of a ray theoretical analysis; 
r is a parameter measuring distance along a ray from the appropriate 
source and s is the parameter denoting a particular ray. T is the phase 
of the wave, T=O represents the wavefront, and the functions F n ( T )  
are the waveforms or phase functions. If equations (1) and (2) are sub- 
stituted into the wave equation, Ocp = 0, it is found that equation (1) is 
a formal solution if T is a solution of the characteristic equation for the 
wave equation 

(OT) '  - k2 ( Tt)2 = 0 (3) 

while the successive amplitudes vn satisfy a set of transport equations 
associated with the phase T: 

' See p. 123. 
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(4) 2 ( VV"*V T - k2~rTt )  + ~"0 T = - OV"-' 

where V-' EO. Equations (4) are easily shown to be ordinary differential 
equations along any ray s equal to a constant. (See ref. 1.) In equations 
(3) and (4), k2 stands for 1/13 or M 2  - 1, depending on whether the prob- 
lem is one for unsteady flows in space-fixed coordinates x, y, z or steady 
flows in body axes x, y. z .  In the latter case, x takes the place oft in equa- 
tions (3) and (4). 

Expansions of the form of equation (1) can always be determined for 
a problem involving a single wave system. The simplest progressing 
wave expansions are those in which F o ( T )  is H ( T )  or P 2 H ( T ) ,  where 
H is the unit step function; then equation (1) becomes a series in powers 
of T or T112 on the disturbed side of the wavefront. The leading term of 
such a series is often called the geometric acoustics approximation to the 
solution cp. 

With cp in the form of a progressing wave, it is possible to interpret 
the asymptotic nature of the leading term of equation (1) relative to the 
full linear potential cp. In general it is found that, for a single wave system 
and physically real boundary data, the approximation to cp afforded by 
v°Fo(t) is uniformly valid in the parameters s and r,  but only for T suf- 
ficiently small; i.e., TIL 4 1, where L is some characteristic time or 
length in the problem. Such an approximation to the linear solution is 
generally not useful as input for the nonlinear correction process (refs. 
2 and 3). However, if the data of the problem are sufficiently simple. 
then a progressing wave expansion can be developed in which the F" (T) 
are, in fact, integrals over the timelike direction of the boundary data 
for the problem. In these cases, it can be shown that the amplitudes v" 
decay rapidly enough with r so that the leading term of equation (1) is 
in reality an asymptotic approximation to cp for small Tlr, uniformly 
in s. 

As examples of problems involving single wave systems, three cases 
of steady flow are cited. First, for plane flow past a symmetric airfoil, 

~ 

where m ( x )  is the half thickness of the airfoil and P =  ( M 2  - 1)'12. In this 
case the full linear solution is itself in the form of a progressing wave. 

For flow past a body of revolution, 

cp=- ( 2 ~ r ) - 1 / 2 F 0 ( T )  +. . . T = x - @ r  27rF0(T) 

where A (x) is the cross-sectional area of the body. In this case, the pro- 
gressing wa*ve expansion iiwolvea waveforms that are iiitegl ais over the 
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body shape, and it can be shown that equation (6) approximates cp uni- 
formly in r for ( T / r )  < 1. 

A third example is for steady flow past a symmetric nonlifting wing 
with smooth leading edge x=xo(y) and streamwise slope m ( x ,  y). In 
this case, 

cp= [ 2 P ( r +  rO)]-’”F”(T) +. . . 

(See ref. 3.) The approximation in equation (7) for this problem is valid 
only in the limit T / L  4 1, where L is, for example, the maximum chord 
length of the wing. Whitham (ref. 3) has made use of an extended result 
for this problem that, although it is not the first term of a progressing 
wave expansion, does involve the same amplitude function as in equation 
(7) and is an asymptotic expression valid for T / r  sufficiently small: 

Here S ( x )  is the cross-sectional area of the body of revolution in each 
plane s equal to the constant to which the wing is equivalent at large r 
as first demonstrated by Hayes (ref. 4). 

DIFFRACTED WAVE SYSTEMS 

A situation involving multiple wave systems arises in steady flow 
past a nonlifting wing with a supersonic leading edge having discon- 
tinuities in spanwise slope xA(y ) .  One of the simplest examples of this 
type is shown in figure 1, with the wavefront configuration in a plane 
x equal to a constant shown in figure 2. If T is the phase variable relative 
to the main, or envelope, portion of the wavefront and T? are the phases 
relative to the diffracted, or tip cone, portions of the front, then it is 
natural to seek a composite progressing wave expansion of cp in the form 

In such a multiple wave situation, however, it happens that the expan- 
sion (9) is always nonuniform in the ray parameters s and a?, regardless 
of its behavior in the parameters r and r?. That is, the amplitude v0, be- 
comes infinite as a+ + a t ,  and d! becomes infinite as a- + a?. These 
are the rays of the families associated with the phases T ,  that coincide 
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FIGURE 1. -Diffracting wing planform. 

with a ray of the family associated with the main phase T. (See fig. 2.) 
These rays are analogous to shadow boundaries in optical diffraction 
problems. 

A major aspect of the present research has been the development of a 
wavefront expansion for diffracted wave problems in which the anomalous 
singularities that plague the cruder analysis of equation (9) are not 
present. To simplify the discussion, consider a case in which only one 
shadow boundary exists. For example, for the problem depicted in 
figures 1 and 2, we confine attention to points in the range of influence 
of only the one wingtip at y= L; then F! (T-) 0 in equation (9). De- 
tailed analysis of numerous special cases has established that near the 
wavefront T =  0 or T+ = 0, the potential is expressible in the form 

FIGURE 2. - Wavefront configuration in plane x = constant for diffracting wing. 
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and the generalized waveforms F n ( T ,  0) satisfy 

Substitution of equations (10) through (13) into Ocp = 0 shows that such 
an expansion is a formal solution if T and T+ satisfy equation (3), the 
v n  satisfy equation (4), and the v: and T+ satisfy equation (4) with a 
modified inhomogeneous term given by 

In the uniform theory, both vn and wn are smooth functions throughout 
the field, with the v): coupled to the vn for n 3 1 as shown by equation (14). 
The shadow boundary is given by 0=  0, and the second term on the right 
in equation (11) exactly balances the singularity in v: that arises in 
equation (9). 

Just as for the cases involving single wave systems, the leading 
term, n = 0, of equation (10) affords a small T approximation to cp uni- 
formly in the ray parameters s and at. For a wing with general spanwise 
slope variation and arbitrarily curved leading edge, the successive ampli- 
tude factors do not decrease strongly enough with r to be useful in the 
straining process. An extended result, asymptotically valid for small 
T / r ,  has been developed and represents the counterpart to equation (8) 
for the smooth wing. At very large distances, the extended approxi- 
mation goes over to the so-called cutting plane approximation, which 
effectively ignores the singular behavior of the solution across the 
diffracted fronts T,=O.  Work is currently in progress to derive the 
approximate nonlinear solution using this extended result as a basis. 

The uniformly valid linear approximation as  represented by equation 
(10) and its asymptotic extension are sufficiently complicated that it is 
of value to consider whether, for simple enough shapes, the uniform ex- 
pansion equation (10) is in fact asymptotic for small T/r ,  now necessarily 
uniform in the ray parameters s and a?. Perhaps the simplest case where 
this can be proved is that of a rectangular wing of constant cross section. 
This case has been studied in detail by Davis, who has given experi- 
mental confirmation of the nonlinear results derived by straining of 
coordinates from a linearized wavefront approximation essentially of 
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FIGURE 3. - Wavefront configuration for rectangular wing. 

the form of the leading term n=O of equation (10). (See the paper by 
S. Davis.) As an illustration of the general theory represented by equa- 
tions (10) through (13), consider the rectangular wing problem for which 
the wavefront geometry is shown in figure 3. For this case 

where the region of integration is the area between the leading edge of 
the wing on % = O  and the hyperbola of intersection of the upstream Mach 
cone from (x, y, 2). Let p ( q )  = [ ( - ~ - 7 7 Y + 2 ~ ] ~ 1 ~  and write 

Assuming (*/2/3p) 4 1, the leading term of cp can be written 

where mllz is the fractional integral of order 1/2 of the slope function for 
the wing: 

(17) 

The symbol Re in equation (16) denotes “real part of’ and gives the cor- 
rect behavior for cp when W(0) or * (L) are negative. 

See p. 219. 
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The behavior of equation (16) near the wavefronts is governed by the 
function * (q); T is stationary at q = s  where s=y ,  and this point de- 
fines a mapping from parameters (x, y, t) to ray parameters ( r ,  s, T), 
where r = p  (s) =t and T =  * (s) =x-pz .  Introduce a transformation 
q ( u )  into equation (16) where 

ux = T -  *(q) u = sgn (q - s) [ T -  *( q )  3 (18) 
so that 

where 
d 
du 

h (u) = [2.rrpp (7))]-1/2 2 

It is convenient for the purpose of this discussion to confine attention 
to points in the range of influence of only one wingtip, y=O. The finite 
wing is then easily handled by a superposition of two expansions of the 
form to be derived. In this case, " ( L )  is negative so that the upper limit 
in equation (19) can be replaced with + PI2. Then h ( u )  is written as 
h ( 0 )  +uK(u), and the integral in equation (19) becomes, after an inte- 
gration by parts, 

where 
8= u ( 0 )  = sgn (-s) [T-V(0)]1/2 (22) 

and the integral of m of order 312 is 

It is readily verified that the last term in equation (21) is of the same order 
in * / p  as terms already neglected in equation (16). Thus, if F ( T ,  8) is 
defined as 

(24) F (T, 8 )  = Re l"' m3/2 ( T -  u') du 

then the leading term of cp becomes 
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which is of the form of equation (10) because equation (24) satisfies equa- 
tion (13). 

The amplitudes in equation (25) are easily computed in terms of ray 
parameters. First, note that the endpoint of integration 8 introduces 
another set of such parameters into equation (25): 

ro=p(O)= (?+ z ' ) ' /~  

Z 
(YO = tan-' - 

Y 

To = T(0) = x - p(r" + z2) ' /2  

Then from equations (15) and (18), 

In the main wave region, where (7'- Bz) =To < 0, the lower limit in 
equation (24) can be replaced with -TIP2. F is then independent of 8: 

and equation (25) reduces to the form of equation (5) for plane flow. 

FOCUSING WAVE SYSTEMS 

Here the situation is analogous to the case of diffraction. Any simple 
progressing wave expansion is such that the amplitude functions be- 
come infinite at the cusps on the appropriate wavefronts. For focusing 
systems, the general theory of uniformly valid expansions has been 
treated in detail in reference 5, in which expansions analogous to equa- 
tions (10) through (13) are discussed and related to corresponding com- 
posite progressing wave expansions of the form of equation (9). For each 
particular problem in which focusing occurs, the appropriate canonical 
functions and amplitude coefficients must be determined in terms of the 
data of the problem. This has been carried out in the present research 
for a variety of cases in connection with sonic boom propagation. In 
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particular, the cases of an accelerating airfoil and an accelerating body 
of revolution have been studied in detail. The derivation of the nonlinear 
counterparts to these results is the subject of research currently in 
progress. 

It is convenient here, however, to consider what is perhaps the simplest 
prototype of a problem involving focusing of waves. This is the case 
of steady flow past a nonlifting wing of constant cross section with a 
leading edge concave to the stream direction as depicted in figure 4. 
If the influence of the ends of the wing is ignored, then the wavefront 
configuration is as shown in figure 5. The origin of coordinates is taken 
at the point on the leading edge whose slope is just sonic. The envelope 
of Mach cones from the supersonic portion of the edge is the cusped 
figure shown, and the field is disturbed outside the sonic Mach cone, 
shown as a broken line. The potential here is again given near the 
wavefronts by equation (16), except that now there exist in general 
two ranges of r) over which *(q) is positive and the integration must 
include both of these. In this case, *(r)) is stationary at two points 
s? that define two mappings from parameters (x, y, z )  to ray parameters 
( r? ,  s+-, T ? ) ,  where T? are the phase variables relative to the front and 
rear portions of the cusped envelope shown in figure 5. A transfor- 
mation 7 ( u )  is introduced by 

(28) 
1 
3 *(q) = A + B u - -  u3 

X 

FIGURE 4.-Concave wing planform. 
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FIGURE 5. -Envelope portion of wavefront configuration for concave wing. 

so that 

Here, 
A = +  ( T + + T - )  

and 
B = [ j  ( T + - T - ) ] 2 / 3  

and Tt- are the phases '4' (s?) referred to above; h (u) is given by equation 
(20) where dqldu is now defined by equation (28). The points q = s I  cor- 
respond to the points u=-t B112. Then, h ( u )  is written as 

h(u)=ho+uh1+ ( B - d )  H ( u )  
so that 

h,=i [h(B'l2) +h(-B112)]  

1 
2B1iL h, =- [h(B'/2) -h(--B'/*)] 

and the integral in equation (29) becomes 

ho rnt,z(A+Bu-6 u3) du+hl ml12(A+Bu--5 u3) u du 
d 

i +I H ( u )  du [rn3/2(A+Bu-B u3)J du (31) 

The portion of cp that is singular across the envelopes T+=O is repre- 
sented by tile iriiegral In equation (23) between :he P.VC largest rnnts 

420-093 0 - 71 - I 
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u? and u:g of the cubic argument. If this is denoted by cp,, then the last 
term in equation (31) can be integrated by parts. The endpoint contribu- 
tions vanish bdcause m3/2 vanishes at u2 and 4, and the remaining inte- 
gral is small compared to the first two terms near the wavefront. If 
F ( A ,  B) is defined as 

(32) F ( A ,  B )  =c m31z(A + B u - i  u3) du 

then equation (31) yields for the leading term of cp, 

Equation (33) is a uniformly valid representation of the singular part 
of cp near the cusped wave envelope. The functions ho and h, can be writ- 
ten in terms of the ray parameters r? and s+. from equation (30), and it is 
readily shown that ho and h, are smooth functions everywhere in the 
field including the ray s=s*  to the cusp along which A = T+ = T- and 
B=O. The generalized waveform F ( A ,  B) is seen from equation (32) 
to satisfy the Tricomi equation 

as required by the general theory discussed in reference 5. 
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Nonlinear Acoustic Behavior at a Caustic 

R. SEEBASS 
Cornel1 University 

The basic theory that underlies the prediction of sonic booms was 
developed long before their occurrence became commonplace. With 
the era of commercial transport at supersonic speeds upon us, this theory 
is now used routinely to predict the pressure signature anywhere that 
it is desired for an aircraft in unsteady supersonic flight in a horizontally 
stratified atmosphere with steady winds (refs. 1 and 2). Fundamental 
contributions to the basic theory were made by Friedrichs, Hayes, Lan- 
dau, and Whitham (refs. 3 to 8). A derivation of one of the results needed 
from linear theory, given first by Hayes (ref. 4) and implicit in Whitham’s 
derivation (ref. 8), due to Lomax (ref. 9) should also be noted. The 
adequacy of this basic theory, never in question on theoretical grounds, 
has been demonstrated in wind-tunnel and flight tests (refs. 10 and 11). 

Recent research on the sonic boom has been directed either at extend- 
ing the conditions under which we may adequately predict the sonic 
boom or at various means of reducing or eliminating its impact. For 
aircraft slender enough that the product of their flight Mach number 
and their slenderness ratio is much smaller than one, there are two 
failures of this basic theory. First, it cannot predict the pressure levels 
that occur in the neighborhood of a caustic; second, it does not take into 
account the effects of atmospheric turbulence on the sonic boom pressure 
signature. 

This paper is concerned with modifying the basic theory to include 
nonlinear effects not properly accounted for in the neighborhood of a 
caustic. The basic theory accounts for nonlinear effects on the propa- 
gation of the pressure signal down a ray tube (refs. 1 and 12), but the con- 
cept of ray tubes is a linear one. In regions where the differential ray 
tube area becemes small, the pressure Oecornes correspondingly large 
and the concept of a ray tube fails. The envelope of the rays is a caustic 
surface; this surface is the locus of cusps in the acoustic wavefronts. 

Aircraft maneuvers and atmospheric refraction, separately or in 
conjunction with one another, cause successively emitted rays to have 
an envelope. The rate at which the ray tube area tends toward zero 
depends upon the iiiaiieuver performed and the acoustic environment 

a7 
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into which the rays are propagated. Analytic expressions for the variation 
of ray tube area with altitude for various maneuvers have been calcu- 
lated by Haefeli (ref. 13) for a uniform atmosphere. For steady, level 
flight in an atmosphere in which the sound speed decreases with alti- 
tude, a caustic surface will occur at which the aircraft’s speed is equal 
to the local sound speed. The pressure field in the neighborhood of a 
caustic is often referred to as a superboom. Such superbooms are an 
unavoidable consequence of supersonic flight. Whenever an aircraft 
accelerates to supersonic speeds, a caustic surface is formed. Unless 
the aircraft never achieves a speed that is greater than the speed of 
sound at  the ground, the caustic will intersect the ground and a super- 
boom will occur. It seems preferable to refer to the pressure field 
that is sensed at  the ground in the neighborhood of a caustic as a super- 
boom. It is a different pressure field than we would sense with a small 
probe in the absence of a plane surface such as  the ground. 

The mathematical formulation of the behavior of the pressure signa- 
ture near a caustic has been given by Guiraud (ref. 14) and Hayes (ref. 
15). A linear approximation to this problem was formulated and solved by 
Lighthill (ref. 16) in his study of the reflection of a weak steady shock 
wave at a laminar boundary layer. Our interest is not in the effect of the 
shock wave on the boundary layer, but in the detailed structure of the 
wavefront as it reflects at a caustic surface. Here the nonlinearity is an 
essential part of the problem. Lighthill, in the paper cited, proposed to 
extend his investigation to include nonlinear effects. Evidently other 
duties and problems intervened. However, aside from determining the 
maximum pressure amplitude and other details of the flow near the caus- 
tic, the linear theory accurately predicts the waveform shapes observed 
in the careful flight-test experiments, “Operation Jericho,” conducted by 
French investigators (refs. 17 and 18). Thery (ref. 19) has studied the be- 
havior of a shock wave in a sound speed gradient by the method of char- 
acteristics. His results are in accord with the similitude of Guiraud and 
Hayes. Because Thery’s results do not account for the influence of the 
pressure rise through the shock wave communicated upstream by the 
subsonic portion of the flow, they must be viewed as a qualitative indi- 
cation of the amplification of the pressure rise across the shock away 
from the point on the shock where the flow behind the shock is sonic. 
Naturally Thery’s calculations must terminate at such a point. 

With the proviso that the wavelength of the incoming signal h is small 
compared to the radius of curvature of the wavefront at the caustic, a 
local irrotational analysis is permissible. In this case Hayes (ref. 15) 
has shown that the local solution near the caustic is governed by 
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where R-' characterizes the relative curvature of a ray with respect to 
that of the caustic. Here x and y are distances along and normal to the 
caustic surface. This local coordinate system has been chosen in a way 
that changes with time and the other physical coordinate are of higher 
order. To complete the problem we must specify the initial disturbance 
at large negative x and positive y; this is properly done by matching the 
solution to equation (1) to a prescribed incoming signal. This signal is 
that determined by geometric acoustics with the appropriate quasi- 
linear correction. Such a description is consistent with equation (1) for 
large y. Because the signal determined by equation (1) approaches the 
solution to Tricomi's equation for large y, we follow Hayes (ref. 15) and 
prescribe an initial signal determined by the asymptotic behavior of the 
solution to the linear Tricomi equation: 

We also require that p' approach zero at infinity in the lower half plane. 
Here p' is the perturbed pressure, p the density, a0 the sound speed at 
the caustic, and X is the usual generalization of y + l .  The character- 
istic length R is prescribed by the behavior of the linear wavefronts 

or the rays 

;= rsy, c = constant 

FORMULATION 

Although the behavior at a caustic is locally steady in the appropriate 
coordinate system and governed by the simple equation introduced 
above, it is conceptually advantageous to investigate an equivalent aero- 
dynamic problem. Consider steady flow of uniform speed U and varying 
free-stream sound speed ao(y)  past a slender airfoil. Choose a coordi- 
nate system (x, y) such that x is in the direction of the flow and require 
ao(0) = U .  Here the initial flow is taken to be at constant pressure with 
a nonuniform entropy distribution; body forces are neglected. In this 
case the velocity perturbatinn is irrotational and derivable from a 
velocity potential @, which satisfies 

where M 2 ( y )  =U*/a: (y) .  We consider an incoming signal of length A 
and arriplitude A prescribed along a h e a r  characteristic; this signa! ear, 
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be thought of as being generated by an airfoil of specified length, thick- 
ness, and shape at some height y’constant. No useful generality is 
achieved by considering an unspecified M z ( y ) ,  and we replace M 2 ( y )  
by 1+M2’(0 )y+ .  . and rewrite the equation for the velocity poten- 
tial as 

[ M Z ‘  ( o ) ~ +  ~ r u - 1 ~ ~ 1  aII - aUU = o 

With M 2  (y) specified, we introduce the linear characteristics 

and express the incoming signal in terms of the pressure coefficient 

withf(F) = O  for A < F < 0. 
We must also require 

as x 2 + y 2 +  00 for y <  0. 
(a:+ a;) l l2 + 0 

The formulation is completed by the transformation 

l a = us513 [ M  2’ (0) pa/2r 
x = s t  
y= [ M 2 ’  (0) ] -1/3s2/313 

which gives the simple canonical description 

with the incoming signal specified by 

and 

for 

( p , - l ) = O  a t  
A o > p > -  S 

on the linear characteristics p ,  q=5kh3/2. Only the parameter 
p = AT[SM”(0)]-7/12 remains in such a description. Specifying the 
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boundary conditions on the characteristics of Tricomi’s equation re- 
quires that p e  1. In place of the length R ,  which characterizes the 
wavefront shape or ray tube area variation in a general formulation, 
we have the length M 2 ‘ ( 0 ) - l .  For conditions typical of troposphere, 
the latter length is about 

Equation (2) is nonlinear and admits discontinuous solutions cor- 
responding to shock waves. A straightforward application of the di- 
vergence theorem to the divergence form of equation (2) shows that such 
discontinuities have a local slope 

ft. 

The subscripts refer to values on either side of the discontinuity. Across 
such discontinuity, the components 46, &I must satisfy 

To complete our formulation, we note that the characteristics of equation 
(2) are given by 

t + & = 5 3. (q + 46) 3/2 + constant (6) 

and that along these characteristics 

This last equation was used in the quadrature that provides the 
characteristics. 

A FORMAL SOLUTION 

A formal expression for the solution to equation (2) can be derived by 
changing from the dependent variables e, r) to s = 8 + &I and t = 7 + 46. 
Such a change is suggested both by the form of the characteristic rela- 
tion (6) and by the equation and boundary conditions for the Legendre 
transformation of the pseudo-potential er) + 4. If we write 

&(e, r)) = A s ,  t )  

then the 5 derivative of equation (2) implies 

tfss -fit = 0 

provided that the Jacobian of the map 

(7) 
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is not zero. The same approximation that we invoked to prescribe the 
incoming signal in terms of the linear solution to equation (2) provides the 
simple prescription equivalent to equation (3): 

for - s  and t having large positive values. 
The solution to the linear equation (7), subject to the condition a((,?)/ 

a ( s ,  t )  = 1/J # 0, then gives & ( t + + q ,  7 + 46). Clearly, further informa- 
tion is required to determine either or 47. To this end, we write 

and use the 7 derivative of equation (2) to conclude that 

again provided that J # 0. The appropriate prescription for the incoming 
signal in this case is 

(11) g - - pt'/4F(s +$ t 3 9  

The solution to equation (10) subject to equation (11) provides c#w([+ 47, 
7 + + e )  which, when combined with the solution &(e+ &, 7 + 46) to 
equation (7) gives implicit solutions for &(t, 7) and &(t, 7). These re- 
sults are somewhat analogous to the implicit solution u =f(x - u t )  to the 
inviscid Burgers' equation ut + uus = 0, and the same difficulties obtain. 
In particular, the solutions become multivalued, and the appropriate 
shock waves must be introduced to render the solution unique. 

We note that f and g are related to one another through 4, and conse- 
quently we may replace equation (7) or equation (10) with the system 

The potential implied by the last equation satisfies Tricomi's equation. 
The linear problems of equations (7) and (10) or the equations (12) are 

solved by means of a Fourier transform on the s coordinate. The results, 
when inverted, can be written in the form 
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where a ( w )  is determined by the prescribed incoming signal F ( p )  

For a prescribed incoming signal F ( p )  and with a( w )  determined from ’ 
equation (14), equations (13) determine 4s and +? implicitly: 

The map from the s, t plane to the 5,r) plane will be singular when the 
Jacobian J - ’  vanishes. A general study of this mapping is not very in- 
formative. For the functions of concern here, we know that our primary 
interest is in the solution for which F ( p )  contains one or two step 
functions. With a discontinuity in the incoming signal, f and g will 
be discontinuous on one characteristic in the s, t plane, logarithmically 
infinite on another characteristic, and singular at the origin as the - 1/4 
power of t and the -116 power of s. This discontinuous and singular 
behavior dictates the main features of the mapping. 

SOLUTION FOR A DISCONTINUOUS SIGNAL 

We consider the signalf- - ~ t - ” ~ F ( p )  where 

and H ( p )  is 0 for p < 0 and 1 for p 3 0; that is, we consider the signal of 
uniform strength when t = 1 and of length 6. With the signal specified 
by equation (16), the integrals (13) can be evaluated explicitly in terms of 
hypergeometric functions. The solution can also be obtained by analytic 
continuation of basic self-similar solutions; for a single discontinuity, the 
results were given by Germain and Bader (ref. 20). Hayes has also car- 
ried out the analytic continuations, reproducing the results of Germain 
and Bader. Our formulation requires explicit formulas for bothf(s, t )  and 
g ( s ,  t ) ;  these results are somewhat complex and are relegated to the 

For the incoming signal, equation (16), our solution takes the form of 
equation (15), where the functions I& and & are discontinuous on 8 + &I 
=-8 (r) + 4q)3/2 and logarithmically infinite on f++~=% ( r ) + + ~ ) ~ / ’ .  

Thus the physical plane map is not a simple one. First, becausefand 
g are discontinuous across s=-$t3/*,  this characteristic maps into two 
distinct lines in the physical piane. These liries du ilot overkip one an- 

apyer1dix. 
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other, and there is a “gap” in the physical plane where the solution is 
yet to be determined. Second, in the neighborhood of the logarithmic 
singularity, the solution in the physical plane is multivalued. This be- 
havior is indicated in figure l by a sketch that shows an overlay of the 
s, t and 4, 71 planes. To complete the solution, we must determine the 
solution in the “gap” region as well as specify the correct procedure for 
rendering the solution single-valued in the folded region. 

THE SIMPLE WAVE REGION 

The solution that fills the “gap” must, of course, be a simple wave 
because it must map into a single characteristic. We can clarify the oc- 
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currence of the “gap” by examining the asymptotic behavior of our 
solution for large -5 and 7, with 5+3q3/’ not too large. In this case, it 
is a simple matter to show that maps onto the two curves 
,$=-+$I2 and ,$=-h3/2+2pq1/4; and our signal, which was discon- 
tinuous in the s, t plane, now has a rise time proportional to its strength, 
namely 2 ~ 7 ) ’ / ~ .  The condition that 

5 + 47 = - 3 (7) + 4s)J’2 

and equation (2) require that the solution in the “gap” be a simple wave 
of the form 

5 - 7) (7) + 4 6 )  ’/* =f * (7) + 46) 

where the arbitrary function f* is determined from the known behavior 
of +g and +II on each edge of the “gap.” For example, w e  may write for 
large - 4  and 7) 

and 
t - - -p t - ’ I4H(s+$ t3 /2)  

s - 5-p t”4H(s+3  t 3 9  

Eliminating H from these two equations and using ~ = - 3 t ~ / ~ ,  we find 

( - 7) (7) + & ) ‘ I 2  - - ( r )  + +5)312 

for the asymptotic behavior in the “gap.” The generalization of this 
procedure, using the full equations for 46 and 4.11 (eqs. (A-1) to (A-3)), 
provides the solution everywhere in the ‘‘gap.’’ 

SHOCK WAVES 

The resolution of the multivalued nature of the solution is clear. All 
branches of the multivalued solution satisfy the basic inviscid equations. 
However, the “reflection” of the incident signal at the caustic gives 
rise to a reflected wave. The incident signal steepens as  it approaches 
the caustic and is essentially discontinuous there. This gives rise to a 
reflected signal that, in our inviscid treatment, is multivalued. A shock 
wave must be introduced to render the solution single-valued but dis- 
continuous. The jump in derivatives of 4 across the discontinuity must 
satisfy equation (5), whereas its path must obey equation (4). 

We note that even with shock waves present, the potential and the 
stream function defined by $6 = +?, +b7 = 4 (7 + 4 6 ) ’  are continuous. Both 
may be written in two ways; for example, 
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Assuming that 45 and $7 are discontinuous at t8, q8 and differentiating 
either definition of 4 with respect to .$ and q, we find 

The same procedure applied to JI gives 

Consequently, we can make either 46 or 411 single valued by introducing 
a discontinuity so that any one of the four integrals 

is continuous. Such a discontinuity will propagate at the mean of the 
characteristic speeds ahead of and behind it (equation (4)) and satisfy 
equation (5). 

The behavior of the multivalued solution near s = 3  t3/' is sketched in 
figures 2 and 3. Figure 2 depicts & ( E ,  q )  as a function of 5 for a fixed q 
and a specified incoming signal. Figure 3 is a sketch of the locus of 
q = constant in the s, t plane. From a practical point of view, the only 
multivalued portion of in figure 2 that makes any contribution to 

& ( t ,  q )  dt occurs when 5 > 0.05. This multivalued function is made If,, 
single-valued but discontinuous at 4 = tS through 

Here 45, corresponds to that branch of 45 that originates at t= - and 
4t2 corresponds to the branch that ends at  5 = + 00. A simple procedure 
for locating the points ts where discontinuities are to be introduced is to 

calculate the running integral & ( t .  q) dt or one of its counterparts. 

This integral is then made continuous and single-valued by discarding 
spurious branches that cause it, too, to be multivalued. Such branches 
occur when the graph of the function represented by this integral inter- 
sects itself. The intersection points correspond to those values o f t  where 
46 is to be made discontinuous; that is, they are the shock positions tS for 
the given value of q. 

If m 
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7 = 0.8903 
p = 0.10 
8 = 20 

0.8 t 
I c 

S 

FIGURE 3.-Locus of points in s, t plane that correspond to r )= constant. 
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NUMERICAL EVALUATION 

The nature of the solution near the caustic and near s=&3t3/' can be 
expressed analytically. From these analytical expressions it should be 
possible to determine the precise behavior of the solution in the neighbor- 
hood of its maximum amplitude. Here we pursue a more straightforward 
numerical evaluation of the solution. The solution is given in terms of 
hypergeometric functions. These functions are easily evaluated on a 
digital computer provided use is made of various alternate expressions 
for them (ref. 21). For this reason it is a simple matter to evaluate the 
solution in the s, t plane; i.e., to evaluate the linear solution. 

Because of the implicit nature of the solution in the physical plane, it is 
necessary to solve a transcendental equation to obtain results that are 
easy to interpret. We can represent the solution given in the appendix by 

t - q - F I ( s ,  t ) = O  (18) 

where F1 and Fz are combinations of hypergeometric functions that 
are discontinuous on s=-3t3ir and logarithmically infinite on s=3t3I2. We 
evaluate &=t-r) and cpv=s-t as functions of 6 for a fixed value of 
7. To do this, we calculate the value o f t  that satisfies the first equation 
for given s and 7; i.e., we solve the transcendental equation (18) for t. 
This is done numerically using Newton's method revised to account 
for the fact that the function Fl is both discontinuous and singular. 
The numerical procedure was refined to the point where it was possible 
to find a root t ,  if one existed at all, to within one part in lo4 within 
20 iterations. A special routine sought multiple roots where they might 
exist. Equation (19) was then used to determine a$. The running integrals 

were evaluated as well to provide the shock location and a check on 
that location. Values for s were taken in steps ranging from 0.10 to 
0.01 in the range - 2.0 s s c 2.0. The smallest increments were taken 
near  SI=$$/^ because t was not known a priori. This procedure did 
not always provide enough values for s when s d 3t3'* and needs to be 
revised. 

At this stage of development, our computer procedure does not in- 
corporate the simple wave solution that provides the values of & and 
+? between the two physical plane images of s=-33t3/*. Our output 
is both digital and graphical. For simplicity, we allow the computer 
to plot continuous curves. Thus the results all display an incorrect 
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linear variation across the simple wave. From the graphical output 
the points of intersection of the two running integrals are determined 
and indicated by tick marks on the 8 axes (they are the same point). 
Whenever such a tick occurs at a 6 that is contained in the simple wave, 
it has been located with an incorrect linear variation for or &. Al- 
though this error may not be serious, clearly a more soohisticated 
evaluation is needed. Also, in many instances we have, as mentioned 
above, not taken a sufficient number of points for s near but slightly 
less than %t?/2. This, too, can affect the accuracy of our numerical quad- 
ratures. Equation (6) can be used to provide a graphical sketch of the 
characteristics once 4 6  and &I have been calculated. 

All calculations were performed on Boeing Scientific Research Lab- 
oratories’ IBM 360/44 computer; graphical output was obtained using a 
Cal Comp plotter. Digital output for a single r) and about 60 values of 
5 averaged 1 min. When most or all of the solution was elliptic, times were 
substantially less than 1 min. Conversely, when the solution was hyper- 
bolic, substantially more iterations were required to find the root of 
equation (18), and the evaluation could take several minutes for a single 
value of r). 

RESULTS 

Numerical evaluation of the solution was carried through for a range 
of signal strengths p and lengths 6. While the absolute magnitude of the 
solution depends on the length of the signal, local variations in magnitude 
from the essentially ambient values were independent of 6. This is to 
by expected; the extent of the alteration of the sonic line shape depends 
on 6, but the rapid variation in signal strength as  the signal approaches 
the caustic is essentially a local phenomenon and independent of signal 
length. Thus we view our results as indicating, in general, local behavior 
of a single shock wave approaching a caustic. However, it should be noted 
that the scale on which they are plotted may encompass several signature 
lengths for a real signal. For example, for threshold operation with the 
tropospheric sound speed gradient giving rise to a caustic, single units 
of our 6 and r) coordinates correspond to roughly 750 and 2500 ft, respec- 
tively. Also, for the particular solution given here, the rise time of the 
incident signal is proportional to its strength. Regardless of its strength, 
the incoming signal becomes essentially discontinuous at the sonic line. 
Thus, while the nonlinear distortion of the reflected signal depends on 
p, the ziaxirnurn azip!itl.de was found to be insessitive to the signal 
strength. 

Figure 4 depicts the sonic line, characteristics, and incoming and 
reflected signals for p= 0.05 and 6 =  5.0. The shaded region represents 
the incoming simple wave. Figure 5 presents the corresponding plots of 
46 U and 4q E V as functions of 6 for prescribed values of q. The 
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-1.0 0 
' .O 5 

FIGURE 4. -Sonic line and characteristics for fi  = 0.05 and 6 = 5.0. 

arrows mark the value of 5, determined by the integrals of these func- 
tions, where a shock wave should be introduced to make the functions 
discontinuous but single valued. Fewer 4 values were used for flows 
that were essentially subsonic. As we have mentioned above, the linear 
variation shown for the incoming signal is spurious. The linear results 
for this case are given in figure 6. Here the X = s and Y t. Similar re- 
sults are given for the nonlinear case with p= 0.1 and 6 =  20 in figures 
7 and 8. 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

Through a simple transformation we have been able to describe the 
nonlinear acoustic behavior at a caustic in terms of a linear equation. 
Using this result we have written, in implicit form, an analytical solution 
for a special incoming signal with a finite rise time. This solution has been 
studied by numerical evaluation and graphical presentation with a digital 
computer. Improvements in this digital evaluation are possible and prob- 
ably warranted. But the essential features of the solution should be ob- 
tainable from the analytic expressions presented here. More important, 
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it should be possible to construct a multivalued solution in the trans- 
formed plane where the equation is linear that will correspond to a 
discontinuous signal in the physical plane. Except for the maximum 
amplitude of the reflected signal, the simple linear solution gives an 
adequate description of pressure signatures and does not differ greatly 
from the distorted nonlinear solution. For values of p ranging from 0.05 
to 0.15, the numerical results indicate that the amplification factors 
4r(5, q)max/4~(5, 1 )  are less than five. 

420-093 0 - 71 - 8 



102 SONIC BOOM RESEARCH 

N 
0 

0 * 
N 

3 r , 
:a - 

0 

0 

0 

(a)r)=1.310. 

0 

0 

0- 

3 r \ 
'0 

0 

:: 
0. 

/ 

I 
0 

4 

9 

0 

"7 

0 i. 

N 

3 r \ 

7g - 
0 0 

0 

0 0 

(b) r)=0.711. 

N- 

:: - 
0 

0 

= 3 
\ 

'E: 
0 

0 c 

0. 

/ 

I YI 4 
0?2.00 -i.20 -b.uo 0:uo 1:2o i.00 

( c )  r) = 0.478. 

FIGURE 5.-Computer-drawn graphs for &=U and +?= V as functions of 8 for p=0.0500 
and 6 = 5.000. 

'-'2.00 - i . zo  -b.uo o'.uo 1:20 2:oo 



9 N- 

o 

n 
D - 

= 
N 

0 

0 

3 E \ x 3 , 7: >D - - 
D 

0 
0 c 

0. 

0 t - 

31 , , I ,  , , 
'-2.00 -1.20 -0.vo 0 . w  1.20 2.00 

X I  

t 

(e )  1) = 0.386. 

'-i.oo -i.20 -b.uo o:uo 1:20 i.00 0J2.00 -i.20 -b.uo d.uo i.20 2'.oo 

0 

$1 

- 1 

v) 1) = 0.353. 

FIGURE 5 (continued). - Computer-drawn graphs for 46 = U and +I= V as functions of 6 
for p=0.0500 and 6=5.OOO. 



(g) 1) = 0.319. 

(h)  1) = 0.282. 

( i  ) 1) = 0.243. 

FIGURE 5 (continued). - Computer-drawn graphs for +e= U and &I= V as functions of Z 
for p=0.0500 and 6=5.OOO. 



NONLINEAR ACOUSTIC 

"7 

N 

D - 
0 

0 

3 r , 
'Z 

0 

0 

D. 

0 - 
-!2.00 .l.20 -b.uo d u o  1:20 2:oo 

X I  
0-2.00 -1.20 -0.uo 0.uo 1.20 2.00 

0 

rn 

D = 

3 = , 
70 - 

0 

G) q = 0.201. 

I 

Y) 

~ 

105 

(k) q = 0.153. 

! I , , , , <  
'-2.00 -1.20 -0.w 0 . w  1.20 2 .00  

X I  

( 1 )  q = 0.097. 

FIGURE 5 (continued). - Computer-drawn graphs for & = U and C#JV, = V as functions of [ 
for p=0.0500 and 6=5.OOO. 



106 SONIC BOOM RESEARCH 

o 
s N- 

o 

n - 
0 0 

II %- 

:e =-z 
=l E . = 

, - 
0 

0 

0 

o. 

- 0 - 

o 

0-’2.00 -i.20 -b.uo 0:uo t:2o i .00 ‘-b.oo -i.20 -b.uo o:uo I:ZO 2.00 

si 

(m) ?) = 0.000. 

(n) TJ = - 0.153. 

FIGURE 5 (concluded).-Computer-drawn graphs for &= U and &, = V as functions of .$ 
for I.L = 0.0500 and 6 = 5.000. 



8 
-1 

0 
----- D 

107 NONLINEAR ACOUSTIC BEHAVIOR AT A CAUSTIC 
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FIGURE 6 (continued). - Computer-drawn graphs off= ,#,e = U and g= = V for Tricorni’s 
equation as functions of X = s = for 6 = 5.000. 
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(h) Y=t=q=0.153.  

(i) Y=t=q=0.097.  

G) Y = t = q = 0 . 0 0 0 .  

FIGURE 6 (continued). -Computer-drawn graphs off= &= U and g=&,= V for Tricomi's 
equation as functions of X = s =  6 for 6= 5.000. 
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(k) Y=t=r)=-0 .097 .  

( 1 )  Y t = r ) = -  0.153. 

(m) Y=t=r)=-0 .243 .  

FIGURE 6 (continued). - Computer-drawn graphs off= & = U and g =  +q = V for Tricomi’s 
equation as functions of X = s  = 6 for 6=5.OOO. 
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(n) Y =  t=  7=-0.386. 

FIGURE 6 (concluded). - Computer-drawn graphs off= I$(= U and g =  I$,== V for Tricomi’s 
equation as functions of X =  s = 6 for 6= 5.000. 

/A = 0.1 s=20 

I I 
-1.0 0 1.0 

FIGURE 7.-Sonic line and characteristics for ~ = 0 . 1 0  and 6= 20.0. 
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(a) r) = 0.825. 

(b) r)=0.711. 

(c) r) = 0.613. 

FIGURE 8. - Computer-drawn graphs of 46 = U and 41 = V as functions of 6 for p = 0.1OOO 
and 6 = 2O.OOO. 
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(d) 7 = 0.561. 
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FIGURE 8 (continued). - Computer-drawn graphs of & = U and 4q = V as functions of e for 
p = 3 . : W  and 6=2O.m.  



SONIC BOOM RESEARCH 114 

(g) 1) = 0.448. 

I 
51 , , I ,  

-2  OD -1.20 -0.IU 0.4" 1.2" 2 .0"  
11 

(h)  q=0.418. 

P I  

0 "7 

' . Z . U O  -'l.20 -b.uo 0.uo l .IU 2 . w  
X I  

(i) 1) = 0.386. 

FIGURE 8 (continued).-Computer-drawn graphs of + e =  U and + v =  V as functions of 6 for 
p=O.lOOO and 6=20.OOO. 
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p = 0.1OOO and 6 = 20.000. 
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APPENDIX 

For the incoming signal equation (16), equation (14) gives 

pIwI'16(1--i sgn o)(eimS-1) 
io 

- -  a(o) =- 

When this result is substituted into equation (13), the quadratures can, 
with perseverance, be carried through. The simplest result is for 4; 
however, our procedure utilizes the derivatives f =  46 and g= $,,; 
we give both below: 

For t > 0: 

f = - p ~ - 1 / 4 [ ~ ( z )  - ~(271 

For t = 0: 

Here Z=3s/21t3k21 and Z'=3(s-8)/2JP21 and the functions U ,  V ,  R and 
S are given in equations (A-4) through (A-7) for Z <  1. For brevity, we 
omit the appropriate continuations for Z > 1. 
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(fi + l)F(1/12,5/12; 1/2; Z 2 )  

+ 2 2  ‘~(11’12) ( fi - 1)F(7/12, 11/12; 3/2; Z 2 ) ]  (A-4) 
r(5/12) 
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i 
I 

I PROPAGATION -THEORY AND EXPERIMENT 
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The works of Lighthill and Whitham provide a methodology for 
developing uniform approximations for the flow fields and shocks 
encountered in a number of aerodynamic problems. These have been 
primarily problems in which variations in flow quantities are most sig- 
nificant in one direction only. However, realistic aerodynamic configura- 
tions generate flows in which variations can be of equal importance in 
more than one direction in some locations. The geometry of the configura- 
tion, the history of the motion, and the properties of the medium can all 
contribute to produce such situations. A study was initiated to assess 
the influence of these factors on the validity and feasibility of the methods 
and the consequences to the computed flows. 

One phase of this study described in this paper (see ref. 1 for more 
details) dea!t with the determination of the shock produced by the leading 
edge of an almost planar thin wing of rectangular planform and sym- 
metrical airfoil section at zero angle of attack. This thickness problem 
was investigated for wings moving at a steady supersonic speed through 
uniform, unbounded atmosphere. The presence of sharp corners in the 
planform and the finite span produce diffractionlike effects from the 
wingtips and an asymmetrical disturbance field with regions of rapid 
variation in more than one direction at several locations. 

pressures for arbitrary configurations assume that the flow field is, to a 
sufficiently accurate approximation, described by means of a family 
of F-functions appropriate to the configuration. However, this notion 
(equivalent body method) is dependent upon the flow “propagating” 
approximately as families of cylindrical waves. But this is not the case 
in the vicinity of a rectangular wing. The flow behaves like planar waves 
in some regions and like cylindrical waves in other regions, and contains 
transition regions in which the flow does neither. Thus the quasi-cylin- 

I 

1 

~ 

I 

I 

I The corhmonly employed methods for calculating sonic boom over- 

1 

i23 
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tana  = m  ip- 
FIGURE 1.-The rectangular wing. (a) Wing planform, wave geometry, and ray geometry. 

(b )  Detail of airfoil section. 

drical approach utilizing the F-function must be replaced by a full 
three-dimensional approach. At sufficiently large distances, of course, 
it is to be expected that the flow is approximately cylindrical in nature. 
But because the behavior of the shock is dependent upon the history of 
the linear solution, the shock will be incorrectly described by the F- 
function procedure for some distance out from the wing. 

METHOD OF ANALYSIS 

In principle, the full linear solution might be employed because it 
can be expressed in closed form for the case of the rectangular non- 
lifting wing. But this would necessitate an almost wholly numerical treat- 
ment, if at all feasible, in which it would be difficult to assess the essential 
features of interest, and which is likely to be even less feasible for more 
general configurations. Consequently, it is preferable to proceed by 
ray tube analysis by a uniformly valid asymptotic approximation to the 
linear solution in the neighborhood of its wavefronts that would replace 
the nonuniform cylindrical F-function approximation. For the rectangular 
wing, a uniform approximation in the ray form can be derived readily.’ 
Figure 1 illustrates the geometry of the wing and the wavefronts of linear 
theory. 

free stream of Mach number M is given by 
The perturbation potential for the nonlifting rectangular wing in a 

where m(1 - z l / d )  represents the slope distribution in the streamwise 
direction of the parabolic airfoil, V is the free-stream velocity, and A is 
the area in the plane of the wing intercepted by the Mach fore cone from 
the field point (z, y, z). 

found on p. 75. 
I A more formal development by M. K. Myers valid for general configurations may be 
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A set of ray coordinates associated with the plane front can be intro- 

duced for z > 0 and 0 < y <  I :  

x=51+prl 
Y'PI 
z =  rl 

where t1 is the phase variable, rl is distance along a ray, and p1 identifies 
the ray. A set of ray coordinates associated with the tip cones (z>O, 
y <O;  z >0, y < 1 )  is 

x = & + p r z  

y= r-2 cos p 2  

z= r2 sin ps  

Near the plane front (&/rl small), the potential may be approximated 
uniformly by 

m ( l  -x1/4 dXl dr, 

where A1 represents the area in the plane of the wing bounded by 
2pr1(51 -xl) - p ' ( - p l  -y1)?=O. Near the tip cones ( t 2 / r 2  small), the 
potential may be approximated uniformly by 

m ( 1  - Xl/d) dXldYl 

where A2 represents the area in the plane of the wing bounded by 
2pr2 ( if2 - x1 + Pyl cos p z )  - P'yf = 0. 

In these approximations, the intersection of the plane of the wing and 
the Mach fore cone is represented by a parabola instead of a hyperbola. 
If the quadratic terms were completely neglected, the intersection would 
be approximated by a straight line parallel to the leading edge and would 
yield the corresponding F-function. The uniform asymptotic representa- 
tion does not occur in the geometric acoustics form of the product of 
an amplitude function and a phase function. The distortion of the wave- 
form as it propagates along a ray tube because of interactions between 
neighboring tubes is neglected in the geometric acoustics approximation. 
This interaction is particuiariy important in the neighborhood of the 
wingtips. However, for r l ,  sufficiently large, the uniform representation 
does approach the equivalent body approximation. But the construction 
of the shock is dependent upon the history of the linear solution in the 
neighborhood of its fronts, and the cutting plane approximation will 
describe the shock incorrectly for some distance out from the wing. 



126 SONIC BOOM RESEARCH 

The axial perturbation velocity is the quantity of interest and may be 
obtained from the potential: 

I : z > O , O <  y < l :  

(1) 
where 

11: z > 0, y < 0 (case y > 1 follows from symmetry): 

where 

and e= r - p 2 .  
To account uniformly to a first approximation for the nonlinear effects, 

in each ray tube the bicharacteristics of linear theory are replaced by 
the following approximation to the bicharacteristics of nonlinear theory: 

where uri  is the perturbation velocity in the ri direction, and the quantity 
p ( u / V )  + u,,/V depends on the curvature of the bicharacteristics and is 
small compared to u. Thus the corrected characteristics may be approxi- 
mated by 

where 
x = p r i - c ( [ i ,  ri, p i )  +ti 
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Equations (1) and (2) represent the uniform first approximation to the 

velocity field. To complete the solution, a shock must be inserted to 
separate the regions of disturbed and undisturbed flow and eliminate the 
regions of multivaluedness implied by equations (1) and (2). The shock is 
positioned according to the bisection rule that the direction of the shock 
wave to a first approximation bisects the characteristic directions that 
meet at a point. In the undisturbed flow, the characteristic direction is 
the free-stream Mach direction p. In the disturbed flow, the appropriate 
characteristic depends upon the region. In the region ahead of the cor- 
rected tip cone characteristics, the family of corrected planar char- 
acteristics are employed, while in the influence domain of the corrected 
tip cone, the trace of the corrected tip cone characteristic is used. Each 
family may be expressed as  .$o = .$i - f (Ti), where ( 0  is the family to be 
used in the bisection rule with f ( r 1 )  =0, [ 0 = 5 1  for one family, and 
f ( r2)  = p(  1/2)  2/2r2, to = (2 -f( r2) for the other. 

If the position of the shock is expressed as 

then by the bisection rule 

so that 

and 
(3) 

(4) 

Equations (3) and (4) can be integrated numerically as  a pair of equations 
for the functions H ( r i )  and ( ( r i )  for several values of pi.  Initial values 
for the shock in the plane region are given by the wedge solution and 
are provided by the conical solution for r2 -+ 0 for the tip cone. 

RESULTS 

Computations were carried out for M=1.4,  m=0.125, and several 
aspect ratios and are summarized in figures 2 to 4. Figure 4 shows how 
the far-field predictions of the shock strength based on the uniform 
approximation compare with those based upon the equivalent body 
approximation. Directly below and to the side of the wing, the two 
predictions agree. In the former region, the tip cone interactions occur 
at relatively small values of r/d and the flow is approximately cylindrical 
for larger values of r/d. Directly to the side, the flow is approximately 
cylindrical fnr all values of r/d.  
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On the other hand, in various meridional planes, the predictions may 
differ by as much as a factor of 2 for the larger aspect ratio wings, al- 
though both methods predict the 3/4-power-law decay. The nonuniform 
approximation always results in a monotone meridional distribution with 
a maximum occurring directly below the wing. However, for the larger 
aspect ratio wings, the uniform approximation shows a meridional 
distribution with both a maximum and a minimum occurring in some 
other meridional plane. This asymmetry tends to disappear as the 
aspect ratio decreases. 

In the near-field region directly below the wing where the plane 
shock dominates, the two predictions differ for the larger aspect ratio 
as indicated in figure 4. However, for l /d  on the order of unity, the equiv- 
alent body approximation is valid within a few chord lengths since the 
extent of the two-dimensional region is limited to small values of r/d. 
This is in agreement with some of the experimental results of reference 2. 

The magnitude of the difference between the two predictions is 
dependent upon the scale distance r/d at which the near-field effects 
have tended to disappear because of the tip cone interactions; the 
larger the aspect ratio, the larger the value of r/d at which this occurs. 
This indicates that care must be taken in extrapolating experimental 
data by the equivalent body method. For if the measurements come from 
the near-field region, the extrapolation will be inaccurate. These con- 
chsions appear to be in agreement with experimenta! reflilts obtained 
by S. Davis.' The experimental results described in reference 3 suggest 
that for more complex configurations with sweepback and lift taken into 
account, the inaccuracies of the F-function approximation may be even 
more pronounced. 

UNIFORM THEORY 
--- NONUNIFORM THEORY - 

See p. 133. 
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MATHEMATICAL FORMALISM 

Although the experiments cited tend to confirm some features of the 
analysis, it may be of value to examine the work in the context of a more 
formal mathematical development. Such an approach is presently being 
explored for the case of the rectangular wing to assess the limitations of 
ray tube analysis. It is based on the notion that the techniques of Light- 
hill and Whitham imply that in problems of the kind being considered, 
there may exist coordinate systems in which uniformly valid approxi- 
mations can be obtained directly by a formal perturbation procedure in 
which the successive perturbation solutions remain small everywhere. 
The corresponding first-order solution should roincide with linear thecry 
in the transformed coordinates. The essence of the development can be 
seen in the case of the body of revolution, which is so well understood 
from the work of Whitham. 

Consider the equations of motion appropriate for the body of revolution 
in a coordinate system in which the linear phase x - p r  is taken as the 
coordinate A and p r  = p:  

1 " " [ v p + , - p u p  V + [ - ( a + l ) u - ( a - l ) p u + 2 p V + O ( u ~ , 2 1 ~ ) ] u *  
V 

+ [ ( a  - 1)P'u + 2pv + (u'1, U')]U,+ [ - ( a  - 1)pu + O(u') ,  v ' ) ) ] v p  

+ [- ( a +  1)pu + O(u') ,  v ' ) ]  - V = 0 (5) 
P 

- pu* +pup - VA = 0 (6) 

The classical perturbation series 

u = € w r ) ( A ,  p )  + €'U'4)(A, p )  + . * 

v = €%")(A, p )  + €'"')(A, p )  + * - (7) 

produces the well-known result that dn) and v(?) represent linear theory 
and have singular derivatives at the Mach cone A = 0, while the higher 
approximations themselves diverge. The propagation of singularities 
into the higher orders is typical of nonuniform expansions. The non- 
uniformity of the perturbation series is evidenced more directly by an 
attempt to construct a wavefront expansion (of the geometric acoustics 
type) in fractional powers of Alp for the equations of motion. The result 
is a formal series 

u = 2 an ( A l p )  

v = 2 b , , ( A / p )  1-n'2 

n = l  

n = ~  



UNIFORM APPROXIMATIONS FOR SHOCKS 131 
that diverges in the vicinity of A = 0 .  However, an expansion of the 
geometric acoustics type is valid for linear theory despite the singular 
derivatives in the first approximation because derivatives with respect 
toA appear in such a way that there is no propagation into the higher 
approximations and the singularity is fully described by the leading term. 
This suggests that for the nonlinear equations, a new independent 
variable be introduced (corresponding to the phase of linear theory) 
which is a priori unknown. It is to be chosen so that equation (5) is in- 
dependent of derivatives with respect to this variable, which should 
insure no propagation of a singularity. If the variable is denoted by 
S (A,  p )  , the equations of motion become (with R = p )  

provided S ( A ,  p )  satisfies the first-order differential equation, which is 
precisely the condition that S be a characteristic surface of the equations 
of motion: 

- (a+ 1 )  E- (a - l )pu+2v+ (u’, v’) 
P 

1 
1 

( a - l ) p u - v + 0 ( u ~ , v ’ )  (Sp/SA) 

(a-l)pu+0(u’,v‘)  ( S p / S A ) ’ = O  (9) 

It follows that 

A(u, V )  =- ( S p / S , )  

is a root of the quadratic equation implied by equation (9). Consequently 

(10) A = S + J A (u, v) d p  

defines S (A, p )  . The coefficients a, b, and c are given by 

a = p ($) + p ( a  - l ) u  -2v+ 0 (u’, v’) 

b= (“v;) - - (  a - 1 ) u + 0 ( u’ , v’ ) 

.=($)- (a- l )u+O(u’ ,v’)  
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The cumulative nonlinear terms in the equations of motion that are 
essential for a uniform approximation have been absorbed into the 
defining equation for S. The nonlinear system (eqs. (5) and (6)) is uniform 
in (S, R )  in the sense that it admits of a geometric expansion of the form 

in contrast to the original nonlinear system in (A, p). In addition, it 
also admits of the more general expansion of  t h e  form 

u=a1- 
VR 

(1 1) 

determined by Whitham to be the uniformly valid expansion for the body 
of revolution. If, further, the perturbation series of the type in equations 
(7) in S and R is introduced, then de) and d2) satisfy in S and R the dif- 
ferential equations of linear theory. But in the coordinates (S, R ) ,  they 
do not generate higher order singularities in the successive perturba- 
tions and are uniformly valid approximations to the exact solution. To 
express these approximations in the physical variables ( x ,  r ) ,  it is 
necessary to expand also the coordinate relation equation (10). If this 
is done, the first approximation is just the Whitham theory. It might be 
noted that the geometric expansion is a progressive wave expansion, 
whereas the more general expansion equation (11) is not, as opposed to 
the case in linear theory where both are progressive wave expansions. 
It is interesting to speculate whether there exists a slight distortion of the 
coordinate R that might, in fact, reduce the system to precisely linear 
theory so that in the new coordinates, an expansion of the progressive 
wave type might be valid for all R.  The fact that coefficients b and c agree 
to the first order in u and v and almost agree to that order with the 
coefficient a-PA tends to suggest this possibility and remains to be 
explored. 

1. 

2. 

3. 
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A Preliminary Investigation of Sonic Boom Waveforms 
Near Focusing Ray Systems 

SANFORD S. DAVIS 
NASA Ames Research Center 

The characteristics of the sonic boom at the sonic cutoff altitude are extremely 
d i f iu l t  to measure accurately. The major obstacles to full-scale experimental 
investigations are ( I )  in the case of sonic cutoff due to acceleration, the cusp loca- 
tion is unsteady and dificult to locate and follow; (2) in the case of sonic cutoff 
due to atmospheric inhomogeneities, these inhomogeneities cannot be determined 
precisely. Wind-tunnel tests are also hampered by the complexities involved with 
accelerated models and the dijiculties encountered with the modeling of atmospheric 
inhomogeneities. 

It is proposed to investigate the characteristics of cusped shock waves by using 
the well-known analogy between steady supersonic flows and unsteady two-dimen- 
sional flows. In this analogy, a thin wing will be used to induce a cusped shock 
wave in the pow field. The rharacteristics of the shock wave in  the vicinity of the 
cusp will then be investiguted both analytically and experimentally. 

A fundnmental di&ulty with the linecirized, analytical approach to the rusping 
problem is that the solution satisfies the mixed Tricomi equation. This d i f i u l t y  
is bypassed in the wing problem because the solution can be expressed directly u s  
an integral over a distribution of elementary sources on the wing planform. 
Furthermore, the behavior of the singularities of this linear solution at und near 
the cusp con be inferred directly by the conjluence of the three neighboring roots 
correspondin6 to the intersertion o f the  leading edge of the wing and the trace of 
the Mach,forecone from the,field point (x, y, z). This transparent,form of the linrar- 
ized solution, when expressed in a geometrical acoustics coordinate system, can be 
used in conjunction with Whitham’s hypothesis to obtain a uniformly valid first 
approximotion to the exact nonlinear disturbance field. 

For the proposed experimental phase of this study, a wing with a convex leading 
edge, inbourd subsonic and outboard supersonic, is used to induce a steady-state 
cusped shock wave in  the disturbed region below the wing A static pressure rake 
will then be used to measure the shock wave signature in this steady-jlow analogy 
to the sonic cutoff problem. The results of this experiment would serve as un ideal 
test case for the numerous studies that are now underway concerning sonic boom 
propagation near the sonic cutoff altitude. 
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SONIC BOOM RESEARCH 

SYMBOLS 

area on the plane of the wing in the dependence domain of 

wing sweep factor, d1 - tan’ x *  
complete elliptic integral of the first kind with respect to 

streamwise slope distribution of the airfoil 
static pressure in the undisturbed stream 
perturbation pressure rise due to the supersonic portion of 

ioiai veiocity vector = Vex t VG 
distance along the ray in a crossflow plane measured from 

the wing trace 
free-stream velocity 
coordinates of a point on the leading edge of the wing 
integration variables in the plane z = 0 
Cartesian coordinate system, the wing occupies part of the 

plane z = 0 and the free stream flows in the direction 
of increasing x 

coordinates of a point on the envelope curve in a crossflow 
plane 

integration variable, a=xI  -tan x*y1 
x* -tan x*y* 
distance along the ray in a crossflow plane measured from 

perturbation velocity potential 
local sweep of the wing leading edge, cot x*=&*/dx* 

the upstream Mach cone from ( x ,  y, z) 

the modulus k 

the wing 

the envelope curve 

INTRODUCTION 

The two most well-known examples of cusped shocked waves in 
supersonic flight are due to the propagation of shock waves through the 
real inhomogeneous atmosphere and due to accelerated flight (fig. 1). 
At the present time, many investigators are examining the mathematical 
details of sonic boom propagation near these cusping regions. To test 
these theories, it would be desirable to have some experimental evidence 
available on the behavior of cusped shock waves. Unfortunately, full- 
scale experimental investigations are difficult to control because: (1) 
in the case of atmospheric refraction, the exact location of the cusp is 
difficult to determine because it is dependent on a precisely determined 
distribution of the atmospheric inhomogeneities; and (2) in the case of 
cusping due to acceleration, the unsteady cusp location is difficult to 
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= I  

FIGURE 1. -Examples of cusping in supersonic flight. (a) Nonhomogeneous atmosphere. 
(b )  Accelerated flight. 

follow and measure. Wind-tunnel tests are similarly hampered by the 
difficulties involved with modeling atmospheric inhomogeneities and/or 
operating accelerated models. 

To avoid these complications, the characteristics of a shock wave in 
the vicinity of a cusp can be studied experimentally (and analytically) 
by resorting to an analogous problem in the theory of steady supersonic 
flows. It is well known that the small-perturbation equations of steady 
supersonic three-dimensional flow is completely analogous to the 
equations of unsteady two-dimensional flow. In this analogy, the axial 
(streamwise) independent variable plays the role of a time variable. 
With the choice of a proper shape for the leading edge of a thin wing, 
a cusped shock wave (similar to the one found in the atmosphere) can 
be induced in the disturbed flow field beneath the wing. This scheme 
has an obvious advantage because the cusp is fixed in space and its 
p r ~ p e r t i e s  can be fdly explored in thc wind tunncl with a simple rake 
of static pressure probes. For the analytic investigation of this cusped 
shock wave analogy, a linearized solution is immediately available in 
integral form and a complicated boundary-value problem for the Tricomi 
equation does not have to be solved. 
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FIGURE 2. - Leading edge Mach cone at (z*, y*) is represented by 
(z -z*y - (y- y*y - 2 2  =o. 

GEOMETRY OF THE CUSPED SHOCK WAVE 

Consider a steady supersonic flow at Mach number M = fi past a 
thin, nonlifting wing in the ( x ,  y)-plane of a Cartesian (x ,  y, z) coordi- 
nate system. The flow is taken in the direction of increasing x ,  and the 
wing has a concave leading edge as shown in figure 2. Using linearized, 
small-perturbation theory, the disturbance due to the presence of the 
wing is first communicated to the undisturbed flow along the surface of 
the family of free-stream Mach cones emitted by the leading edge of the 
wing. If ( x * ,  y*) represents a point on the leading edge, a typical Mach 
cone can be written as 

In any crossflow plane x = constant, the Mach cone trace of equation (1) 
is represented by a circle of radius ( x  - x * )  and centered at y = y*, 
z = 0. As x* varies in the range 0 x* 3 x, a family of circles is gener- 
ated in the crossflow plane. Figure 3 shows such a family (for the region 
y > 0) in the plane x = 0.5 for a wing with a concave leading edge given by 

y* = 0.5x* + x** (2) 

The form of equation (2) has been specially chosen so that the inboard 
portion of the leading edge is subsonic and the outboard portion is super- 
sonic. Figure 3 shows that the supersonic portion of the leading edge emits 
a family of Mach cone traces that form an envelope curve. Because each 
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point of the envelope is formed by the confluence of two neighboring 
elementary Mach cones, the envelope defines a locus of enhanced dis- 
turbances. This envelope differs from the envelope obtained from a wing 
possessing a straight supersonic leading edge in two important respects. 
First, the envelope is not straight, but consists of two distinct branches: 
a concave branch and a convex branch. These branches meet at a cusp 
that delineates the maximum extent of the envelope. This cusping be- 
havior is the supersonic flow analogy of the atmospheric cusp. Second, 
the envelope does not separate the regions of disturbed and undisturbed 
flow because, in this case, the envelope forms in the domain of depend- 
ence of the Mach cone emitted by the vertex of the wing. 

The cusp location and the envelope curve are obtained analytically. 
The envelope is a surface in the Cartesian space, and the cusp is a curved 
line in Cartesian space. The intersection of these quantities with a 
plane x=constant define a curve and a point, respectively. A point 
(x, y, z) is on the envelope surface if equation (1) and its derivative with 
respect to x* are simultaneously satisfied. 

- Y  

FIGURE 3. -Mach cone envelopes in the plane x = 0.5 for a wing planform given 
by = O.SOx* + (x*)', y* > 0. 
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(x  - x*)2 - (y-y*)2 - 22 = 0 

A ELEMENTARY MACH CONE 
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ENVELOPE CURVE IN PLANE 
x = CONSTANT 

y = y* +(x-x*) tan X* 

cot x* = dy*/dx* 

x* IS THE LOCAL SWEEP AT (X*, y*) 
THE PARAMETER X *  VARIES IN THE 

z = ( x - x * ) J W  

RANGE 0.25 5 x* 5 0.50 

CAUSTIC POINT IN PLANE 
x = CONSTANT 

x = x* + cot x*(cot2x*- l)/d2y*/dx*2 

y = y*  + (cot2X*-l)/d2y*/dX*2 

z = (cot2x*- 1)3'2/d2y*/dx*2 
X* IS FOUND FROM THE FIRST EQUATION 

WITH x=O.50 
FOR THE EXAMPLE SHOWN, 

cot x* = 0.50 + 2 x *  

d2y*/dx*2 = 2 
x* ei 0.32, y*  s 0.262 

FIGURE 4. -Envelope curve in the plane z = 0.50. 

(x - x* ) 2 - (y - y* ) 2 - 2 2  = 0 

- 2 ( x - x x " )  +2(y-y*) cot x * = o  (3) 

The quantity x* is the local sweep of the leading edge at (x*, y*). In 
the crossflow plane x = constant, the envelope curve is given with re- 
spect to the parameter x* by 

y=y*+ (x-x*) tanx* 

z =  (x-x*) V\/l-tan'X* 
(4) 

where y* and x* are given functions of x*. Note that equations (4) show 
that only those values of the parameter X* greater than the value of 
x* defined by tan x* = 1 contribute to the envelope surface. This behavior 
is a confirmation of the well-known fact that only the supersonic portion 
of the leading edge emits Mach cones that coalesce to form envelopes. 
Figure 4 shows an example of the envelope in the plane x= 0.5. 
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A point (x, y, z) is on the cusp if it satisfies equations (3) and the second 

derivative of equation (1) with respect to x* simultaneously. 

or 

(x - x*)2-  (y -  y*)2- 2 2 =  0 

- 2 ( x  - x * )  + 2(y - y*) cot x* = 0 

2 - 2cot2 x* + 2(y -y* )d2y* /d (x* ) "=O 

cot x* ( C O P  x* - 1) 
d"*/d(x* ) x=x*+ 

(cot2 x* - 1) 
d'y*/d( X* ) 

y=p+ 

(5) 

In a given plane x = constant, the first of equations (6) is used to solve 
for the value of x* (and y* and x*) at the cusp. The remaining two for- 
mulas are used to find the cusp point y and z. Again, reference to figure 4 
will show the cusp in the plane x=O.5. , RAYS IN THE CROSSFLOW PLANE 

In the region surrounding the wing, the envelope is generated by a 
I family of straight lines. Each one of these lines represents a particular 
1 generator of one of the free-stream Mach cones emitted by the leading 
I edge of the wing. These envelope generators are the bicharacteristics of 
' the wave equation, and the parameter y* (or x *  or x*) may be used to 
I identify each member of the bicharacteristic family. In the crossflow 1 plane, the rays are defined as the projection of a particular bicharacter- 

istic into the plane x= constant. This definition of the ray is consistent I with ray concepts introduced in geometrical acoustics, the only difference 

1 arises in replacing the time variable t by a space variable x. 
In the crossflow plane, the family of rays are everywhere orthogonal 

to the envelope curve, and the family of envelopes and rays form a 
mutually orthogonal family of curves. Some representative rays are 
shown in figure 4 for the concave and convex portions of the envelope. 
Also depicted in figure 4 is the caustic curve that corresponds to an 
envelope of the ray system. 

The ray geometry is most useful in studies of the behavior of the 
solution near the envelope curves. A ray coordinate system will be 
introduced to replace the Cartesian coordinates ( x ,  y, 2). The three 
parameters to be chosen will be denoted by (y*, s, t), where y* is the 
ray labeling parameter. s represents distance along the ray to the field 

I 
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2 

- 1  s'/l 

y" = f (x") Y Ye 

FIGURE 5. -Ray coordinate system. 

point, and 5 represents the distance behind the envelope to the field 
point. From figure 5, the distance from the envelope (ye, z,) to the 
origin of the ray is obtained as 

or with the help of equations (4) 

s + r = x - x* (7) 

Because cos 8= (ye-y*)/(s+t)  =tanx* ,  the variables (y, t) are 
related to (y*, s) by 

(8) 

Equations (7) and (8) give the required transformation from (x, y, z )  to 
(y*, s, 5) (recall that y* is a given function of x* as well as tan x*). 

y= y* +s tan x*  

z = s  V1 -tang x* 

SOME QUALITATIVE ASPECTS OF THE LINEARIZED SOLUTION 

One of the major difficulties with the theory of cusping shock waves 
is due to the problems arising with the simplest linearization of the 
equations of motion. In the vicinity of the cusp, the perturbation quanti- 
ties satisfy a mixed partial differential equation of the Tricomi type. 
Although particular solutions to this equation are known, they are 
difficult to work with because they are expressed in terms of nonelemen- 
tary hypergeometric functions. One of the major simplifications with 
the wing problem is that the linearized perturbation quantities can be 
expressed directly in the form of an indefinite integral. 
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The well-known solution for the perturbation potential for a steady 

past a thin, nonlifting wing can be written as flow at M = 

To simplify the analysis, the airfoil slope rn(xl ,  yl) will be assumed to 

The characteristic form C can be reexpressed in terms of the ray 
, be constant. 
I 

I coordinates as 

I C(xl ,  yl)  = [t+ (x *  -tan x*y* -11 + tan x*y1)l2 + 2 tan x*(Y* - Y I )  

[[+ (x*  -tan x*y* -xl + tan x*yI) ] + 2 s [ t +  (x* -tan X*Y* - X I  

+ t a n ~ * y l ]  - (1-tan2 X*) (Y*-YI ) '  (10) 

The area of integration in equation (9) can have one or more segments, 
depending on the location of the field point P ( y * ,  s, 6). A s  an example 
of this behavior, figure 6 shows the sequence of intersected areas for a 
wing with a leading edge given by 

~ I = * ( O . ~ X I + X ~ )  y 1 5 0  

At point a on the ray, the disturbance field is due to the subsonic 
portion of the leading edge only. This is shown in sketch (a) by the small 
shaded area near the origin. At point b, inside the concave envelope, 
two regions are shown shaded in sketch (b).  The Mach cone intercept in 
the ( X I ,  yI)-plane intersects the wing leading edge in three distinct places. 

i 
\ 

\ 

/ 
I 

1 FIGURE 6.-Left: Areas of integration shown shaded; right: Variation of intercepted areas 
&iig 2 ray. I 
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The singular part of the solution across the envelope is introduced by 
the first appearance of the roots 2 and 3. With increasing distance behind 
the envelope, roots 1 and 2 approach one another. When roots 1 and 2 
are coincident, the rear, convex branch of the envelope is first reached. 
This case is shown in sketch (c). A further increase in distance relegates 
roots 1 and 2 to complex values and only root 3 remains. This integration 
area is shown in sketch (d). This example clearly shows how the enve- 
lopes are intimately related to the behavior of the points of intersection 
between the Mach trace and the leading edge of the wing. 

An envelope with two branches (and a cusp) can only occur when the 
intersection of the Mach forecone and the leading edge has three real 
roots (1, 2, 3). One envelope corresponds to 2 = 3 ,  the other to 1=2 ,  
and the cusp to 1 = 2 = 3. Clearly, no cusp can form in the case of a wing 
with a straight leading edge because only two real roots appear. 

THE ASYMPTOTIC FORM OF THE LINEARIZED SOLUTION AllRlBUTED TO THE SUPERSONIC 
PORTION OF THE LEADING EDGE 

Formulation of the Potential 

The exact linear potential, equation (9), will now be cast in an as- 
ymptotic form that can be integrated explicitly. Instead of the variable 
xl, let a new integration variable a be defined by a = x I  -yl tan x*. The 
family of straight lines a = constant are coincident with and parallel to 
the line tangent to the leading edge at (x*, y*). In particular, the line 

this reinterpretation, the quantity C becomes 

a=a*- --x * -  y * tanX* is the leading edge tangent at (x*, y*). With 

where B2 = 1 - tan2 x*. 
An asymptotic approximation to equation (11) is desired in the region 

where 41s is small (i.e., in the vicinity of the envelope curve). The quantity 
a has been chosen because it varies in the approximate range 
0 c a* - a 6 5. Consequently, when 41s is small, the quantity ((+ a*-ay 
is small compared with the remaining terms. If this quadratic term in 
t+ a* -a is neglected, the characteristic quantity C becomes 

C ( a ,  yl) = 2 tan x *  (y* - yl) (5 + a* - a )  
+ 2 s ( 4 +  a* - a )  - B*(y* -y1)2 (12) 

Note that the usual cutting plane approximation used by Whitham 
would also neglect the terms in y*-yl in equation (12). However, in 
this uniformly valid approximation, no such restriction is placed on the 
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spanwise variations. The desired portion of the velocity potential at the 
envelope is expressed as 

where C is given by the expression (12) and A I  represents the area 
depicted in figure 7. The contribution to the potential from equation (13) 
corresponds to the change in the solution as the envelope curve is 
crossed. 

Calculation of the Pelturbation Plesrure I 
Equation (13) for the potential must be obtained by integrating l / f l  

I over the area bounded by the curve C = 0 and the leading edge of the 
wing. Let the leading edge be given by the expression: 

If X I  is replaced by yl tan x* + a, and the resulting formula is expanded 
in a Taylor series about yl = y*, the quadratic approximation to a ( y l )  is 

I a ( y I )  = a* - tan3 x*(y* - ~ 1 ) ~  (15) 

& +  
i / 

I -  - . . -  . .  . . * .  . . .. 
C'IGURE 1.-Asymptotic form of potential due to the supersonic portion ot the wing leading 

edge. 
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For this smooth wing, only a quadratic approximation to the wing 
leading edge is necessary for the evaluation of the potential. The explicit 
expressions for the potential become 

(16) 
e +  a* - B' iy* - yt)12/iZ tan x* iy* -yt) + 2 s )  1 

da 7T @i =-- dyl I u * - t a n 3 ~ * ( y * - y l ) 2  

where C is the expression given in equation (12) and p and y3 are the 
intersections of C ( a ,  yl) = 0 and the wing leading edge. (See fig. 7.) 
After performing the a integration and differentiating with respect to x, 
the perturbation pressure is expressed as 

(17) 
AP1 1 - 2-Ym 
p o  n- f i t an2  x * I r  v r 3 - q ) ( q - r 2 ) ( q - r l )  

where Y = ~ ,  q = y1- y*, and r3 > rz > rl are the three real roots of 
C U  

1 
2 st cotJ x * - t  cot3 x*q-- cot4 x*(B2-22s tan3 x * ) q 2 - q 3 = 0  

Equation (17) can be expressed directly in terms of the roots r3, r2, and rl 
as 

or 

and 0 satisfies 
- 

cos /J" 
2 27 

12 tan5 x*(- (BP -2s tan3 x*)' 
12 tanH x* 

(B"2s tan3 x*)3 

a= 

4 tanIP x* tanJ x* 

where K ( k )  is the complete elliptic integral of the first kind and 

1 
3 sin - 0 
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Examination of the Perturbation Pntrure 

The formula given in equation (19) is valid for the region between the 
concave and convex envelope curves. Along a ray, the angle 0 varies 
from 0 at the concave branch to IT at the convex branch. 

Away from the focus, but near the concave branch, (B2-2starij 
x*)” + (12 tan5 x*t) and 0 + 0. In this region, the pressure becomes 

IThe quantity (B2-22s tan:’x*) may be identified with the ray tube area 
,ratio A ( s )  of geometrical acoustics. Equation (20) can be obtained 
,directly from the usual geometrical acoustics formulas. For points far 
from the focus, equation (20) is a good approximation to the pressure 
jump. However, in the region near the focus, (A (s) -+ 0) and the uni- 
formly valid representation of equation (19) must be used for the pertur- 
bation pressure. 

In the case of a wing with a straight leading edge, the term in equation 
(20) that is proportional to the leading edge curvature vanishes. In this 
instance, the pressure formula becomes 

’ which is the well-known formula for the pressure rise across an infinite 
wing yawed at an angle x*  with respect to the free stream. 

At the convex branch, the angle  IT. When  IT, the modulus 
k of the elliptic integral in equation (19) approaches unity. In  this case 
,the value of the elliptic integral approaches a logarithmic infinity. This 
corresponds to the behavior indicated by Lighthill (and others) for a 
step discontinuity reflecting from a caustic as a logarithmic infinity. 

I 

SUMMARY OF PROPOSED RESEARCH 

The preceding paragraphs have described the main features of the 
analogy between atmospheric cusping and the steady cusped shock 
waves emitted by certain thin wings in supersonic flow. The results of an 
experimental investigation into this wing-induced cusping phenomenon 
should serve as an ideal “first cut” for the variation in strength of a 
shock wave near a caustic. By varying the thickness distribution of the 
wing, any desired shock wave signature (i.e., an N-wave) could be 
induced in the vicinity of the cusp. In this manner, a variety of sonic 
boom signals could be studied experimentally as they propagate through 
a caustic. 

This paper has also demonstrated the feasibility of obtaining the 
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most important part of the linear solution (as far as shock waves are 
concerned) in closed form. This linear solution can be used as the basis 
of a characteristic correction scheme to correct for weak nonlinear effects. 
However, the usual one-dimensional characteristic correction formulas 
must be modified to include the effects of large pressure gradients nor- 
mal to the ray directions. 



Some Attempts To Theorize About the Anomalous Rise 
Times of Sonic Booms 

figure illustrates the general observation that larger rise times may be 
expected when the distance from the ground track is increased. (Both 

ALLAN D. PIERCE 
Massachusetts Institute of Technology 

1 

I 
The material presented at the conference was based to a large extent 

on two recent papers, both of which are scheduled to appear in the 
Journal ofthe Acoustical Society. The first (ref. 1) gives a comprehensive 
development of the author's theory of the anomalous rise times of sonic 
booms, while the second (ref. 2) is a review by the author and Domenic 
J. Maglieri of the present status of research on the effects of atmospheric 
turbulence on sonic boom waveforms. The present paper is essentially 
a condensation of a portion of the latter paper. It is hoped that this addi- 
tional airing of the author's views will help to stimulate future research 
aimed at resolving the current controversy that exists concerning the 
physical origin of the anomalous rise times. 
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FIGURE 1.- Relative probabilities (proportional to probability density functions) of obtaining 
a given value of rise time T or half rise 711) within a given interval for various distances 
from the ground track, derived from data taken at Oklahoma City. 

pared to what might be expected for a plane shock in a homogeneous 
atmosphere with realistic dissipation mechanisms. While the larger 
rise times of the order of 10 msec clearly correspond to rounded-type 
signatures, one should note that even the spiked waveforms have 
anomalously large rise times. 

Although it has been generally agreed for some time that the varia- 
bility of sonic boom signatures is largely due to atmospheric turbulence, 
the physical mechanisms by which the turbulence creates spiked or 
rounded waveforms or anomalously large rise times remain somewhat 
controversial. In spite of the fact that a rich and impressive literature 
exists that is concerned with the interaction of waves and turbulence, 
the direct application of this literature to sonic boom propagation 
phenomena is somewhat less than obvious. Among the distinctions of the 
problems typically treated in the literature and those of interest here 
are (1) that the sonic boom cannot be regarded as a narrowly collimated 
beam, out of which turbulence scatters energy; (2) that the boom is a 
transient disturbance rather than a narrow bandwidth signal; (3) that the 
criteria for applying either of the two standard approximations, the ray 
approximation or the first-order scattering approximation, may not 
strictly be satisfied in the case of sonic booms; and (4) that nonlinear 
effects may be of importance in the description of the accumulative 
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effect of turbulence on the waveform when the boom propagates over 
relatively large distances. 

Regardless of just what mechanism is responsible for the rise times, 
it would seem that it should be similar to that which causes the type R 
(rounded) waveforms. A crucial question in this respect is whether or 
not the turbulence is causing higher frequency energy to be extracted 
from the waveform (either by scattering or by some other process). 
In an attempt to answer this question, it is of interest to reexamine 
Garrick’s comparison (ref. 7) of the relative energy spectra of signatures 
having rounded and peaked shapes. In figure 2, the energy spectra of 
the two waveforms shown in figure 3 are simultaneously plotted. Al- 
though the two spectra do not exactly agree, one should note that there 
is a remarkable agreement in the gross shape of the two curves at 
higher frequencies. The interpretation given by Garrick to this fact is 
that turbulence leads to a phase-scrambling process taking place for the 
higher frequencies. In the following we examine the possible mechanisms 
that may account for such phase scrambling. 

SCATTERING THEORIES 

The first attempt to give a theory of the anomalous rise times was 
apparently made by Crow (ref. 8), who conjectured that energy “is 
beaten out of the shock front by the intense interactions that give rise 
to scattering.” He estimated the average energy density of the scattered 
wave on the basis of first-order scattering the9ry as a function of the dis- 
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FIGURE 2.-Energy spectra for the two different sonic boom pressure signatures in figure 3. 
The relative amplitude is defined as 10 log,,, I f ( w )  12, wheref(w) is the Fourier transform 
of the acoustic pressure. 
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n 

FIGURE 3.-The peak overpressure Apt, measured at microphones along an 8000-ft array 
on the ground track of an F-104 airplane flying at 30 500 ft, with two sample signatures. 

tance h behind the front. The integral of the resulting expression over 
values of h greater than the shock thickness h, was then equated to the 
energy of the undisturbed shock within a thickness of the order of h,. 
(This is not exactly Crow’s phrasing, but our interpretation of the sense 
of his discussion.) The result is that h, should be of the order of cutc, 
and thus that the rise time should be of the order of te .  The argument, 
although persuasive, is somewhat tenuous. It does, however, demonstrate 
the fact that a first-order scattering theory by itself is insufficient to 
explain the anomalous rise times. (Here t ,  is Crow’s characteristic time, 
which is a function of the height profile of the rate of turbulent energy 
dissipation per unit mass, which is estimated to be of the order of 1 msec. 
The quantity co is the sound speed.) 

One should note that the point of view that the rise times are caused 
by scattering, if given too literal an interpretation, is in apparent conflict 
with some well-known properties of shock propagation through an 
inhomogeneous medium. In an inviscid fluid, once a discontinuity is 
formed, it tends to stay a discontinuity (ref. 9), even though it may prop- 
agate through an inhomogeneous medium. Furthermore, the magnitude 
of the discontinuity (if sufficiently weak) tends to adjust (in a reversible 
manner) so as always to conserve wave action (ref. 10). The results 
derived from first-order scattering theory should therefore only give 
at best, an approximate description of the deformation in shape of the 
front and of the adiabatic adjustment of the discontinuity induced by the 
presence of inhomogeneities. The scattered wave cannot be construed 
as a description of energy extracted from the actual shock. While the 
above argument may be modified somewhat by viscosity and nonlinear 
effects, the modification would appear to be relatively small, when one 
considers the fact that viscosity by itself is far too small to account for 
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the actual rise times and that nonlinear effects should, if anything, cause 
the rise time to decrease. Thus, the view that scattering causes a gradual 
erosion of a shock front would seem to have no physical basis. 

A basic theoretical difficulty in the problem of estimating a numerical 
value for the mean rise time is that one would generally want to take 
such an estimate as the rise time of an average signature. The average 
signature as a function of time, on the other hand, is strongly dependent 
on the choice of time origin in individual signatures. It is well known, 
for example, that if each individual waveform had zero rise time, but 
the time of shock onset is random, then the average waveform will have a 
finite rise time. 

George and Plotkin (refs. 11 and 12) have recently proposed a theory of 
the anomalous rise times in which nonlinear effects play a dominant role. 
Their basic assumptions are that the rise times are created by a scattering 
of high frequencies out of the front and that this erosion process is partly 
or totally offset by nonlinear steepening. The implication is apparently 
that, for propagation over sufficiently large distances, the rise time 
eventually attains an equilibrium value characteristic of the net shock 
overpressure Apo and of the parameters describing the  state of turbu- 
lence, such that there is a balance between scattering and nonlinear 
steepening. In general, their analysis predicts that the overpressure p 
at a distance -6 behind the nominal location of the front should ap- 
proximately satisfy Burgers’ equation 

where Aull is the turbulent fluid velocity component in the nominal direc- 
tion of propagation. The quantity y (=1.4, for air) is the specific heat 
ratio. 

The general initial-value solution (refs. 13 and 14) to Burgers’ equation 
was used to study the gradual evolvement of the signatures of an initial 
step-function shock of overpressure Apo. At large times, the resulting 
waveform asymptotically approaches a characteristic shape with a 

The inverse dependence on Apo should particularly be noted. 
Although a substitution of representative values into the above ex- 

pression gives a value of T that is of the general order of magnitude of 
the experimentally observed rise times, one finds it difficult to accept 
the George-Plotkin theory without a closer examination of its major 
premises. One particular problem, mentioned earlier in this section, is 
that of the distinction between the average rise time of a collection of 
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signatures and the rise time of the average signature. The pressure 
p ( r ,  t )  in equation (1) clearly must be interpreted as an average, perhaps 
an ensemble average in which 5 and t should be kept fixed during the 
averaging process. If this is the case, then the function p ( 5 ,  t )  obtained 
from a solution of equation (I) represents an average signature of an 
ensemble of signatures that do not necessarily all begin at the same time. 
In this event, the computed rise time of the average signature could be 
strongly affected by the spread in arrival times of the sample signatures. 
In fairness, it should be stated that the authors believe p to be defined 
such that this difficulty is avoided. However, in perusing their paper, the 
present author car? see ET) r e i s o ~  fer acceptizi; :his :o be the case. In 
particular, the present author questions the argument whereby they 
replace (ref. 12) 

by 

D(GPl0) 
~ € 2  ap12 - 

at  
-- 

where the brackets denote an ensemble average. The remaining symbols 
are defined in the paper by Plotkin and George. 

THE WAVEFRONT FOLDING MECHANISM 

The remarks in the previous section concerning the intrinsic conflict 
between the concept of scattering and what is known concerning the 
propagation of discontinuities hold, strictly speaking, only in the absence 
of caustics, which are surfaces in space along which the ray tube areas 
of geometrical acoustics rays vanish. However, even in the presence of 
caustics, linear acoustics predicts that weak discontinuities should 
propagate according to the laws of geometrical acoustics along any ray 
segment where the ray tube area is nonzero. Thus any alteration of shock 
fronts caused by the presence of caustics is a discrete rather than a 
continuous process. 

A theory to explain the anomalous rise times in terms of processes 
occurring at caustics has been recently proposed by one of the authors 
(ref. 1). The basic mechanism for creation of the rise times is considered 
that of wavefront folding at a caustic. If an abrupt shock advances into 
a turbulent atmosphere, the rippling due to refraction or travel speed 
(fig. 4) variations along the front can result in the formation of caustics. 
(See fig. 5.) As the rippled wavefront approaches the cusp of a caustic 
(the line joining two caustic surfaces) the radius of curvature of the front 
becomes progressively smaller. After it reaches the cusp, the linear 
theory (refs. 15 and 16) predicts a wavefront folding (fig. 6), such that at 
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FIGURE 4.-A sketch illustrating the rippling and folding of an incident sonic boom shock 
by the turbulence in the lower atmosphere. The common theoretical assumption that 
only the lowest 3000 ft of the atmosphere has appreciable turbulence is also indicated. 
The choice of coordinate system is that used by Crow and by Pierce in recent theoretical 
studies. 

points between the legs of the caustic, three wavefronts rather than one 
arrive. If the incident wave is a weak shock, two of the wavefronts will 
also be weak shocks, whereas the third will formally be a logarithmic 
singularity (which one may expect to be limited in amplitude due to 
nonlinear effects and viscosity). 

The viewpoint was advanced that such wavefront folding occurs on a 
small scale many times as a wavefront propagates through a turbulent 
atmosphere. The net effect as observed at a single far-field point would 
then be that in which many segments of the multifolded front pass by 
(fig. 7(a)). The resulting overpressure signature would accordingly be 
composed of a number of discrete pressure jumps (microshocks) and 
logarithmic singularities (fig. 7(b) ) ,  with the latter whittled down to finite 
size and with the individual microshocks smoothed out by viscosity. 
The net effect would appear to be a wavefront with an anomalously 
large rise time. 

The one principal uncertainty in the application of the wavefront- 
folding mechanism to sonic booms is the roie of nonlinear eflects. In 
this regard, it could conceivably be argued that when a shock approaches 
a caustic, the portion of the front with the smallest radius of curvature 
will have the highest overpressure and will therefore tend to speed up 
relative to other portions of the front. The net effect could then be that 
the ripple straightens itself out and thus that wavefront folding does not 
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FIGURE 5.-Ray paths describing the subsequent propagation of a rippled wavefront. The 
caustics are formed by the locus of points where neighboring rays intersect. The sketch 
indicates that rippling may lead to either focusing or defocusing. 

occur. (This point of view is implicit in one of Whitham’s earlier papers, 
ref. 17.) This general question of nonlinear effects on weak shocks near 
caustics is currently one of great interest in connection with the super- 
boom generated by a maneuvering aircraft. Recently, Beasley, Brooks, 
and Barger (ref. 18) have experimentally studied the behavior of weak 
shocks at a focus (which may be considered a degenerate case of a cusped 
caustic) using spark-generated N-waves reflected from parabolic mirrors. 
They found their results tended to conform to concepts derived from 
linear acoustics, particularly as regards the phase shift at the focus. 
More recently, Kuo (ref. 19) has sought to demonstrate explicitly wave- 
front folding by repeating Beasley, Brooks, and Barger’s experiment, 
but with aberrated mirrors. The results are solnewhat ambiguous 
because of the limited resolution of the microphone but do tend to 
support the folding hypothesis. 

Perhaps the most intriguing experimental evidence obtained to date 
concerning the wavefront-folding theory of the anomalous rise times are 
the shadowgraphs taken by Bauer and Bagley (ref. 20) of shocks propagat- 
ing through a turbulent boundary layer during their ballistic-range ex- 
periments. Figure 8 is typical of those appearing in their report. This 
should be compared with the sketch in figure 7(a). While there is con- 
siderable latitude in the subjective interpretation of the myriad of lines 
(evidently microshocks) in figure 8, the overall pattern would appear 
to support the hypothesis that the turbulence induced the wavefront 
folding. 

The distinction between the refraction-focusing-diffraction process 
described as a means of producing spikes in a previous paper by the 



ANOMALOUS RISE TIMES OF SONIC BOOMS 155 
author (ref. 21) and the wavefront-folding process is evidently one of 
scale. The folding mechanism requires a relatively short focal length 
of the ripples and may occur many times before the shock reaches the 
ground. The composite front may be viewed as a more or less tightly 
packed bundle of separate fronts. The more pronounced spikes are 
presumed to be caused by the larger scale turbulence, which refracts 
and focuses the composite front as a unit. 

The expected number of microshocks in a sonic boom by the time 
it reaches the ground may be estimated as the expected number of 
rays that connect the near-field shock front with a given point on the 
ground. With the adoption of the same turbulence model as used by 
Crow, the result turns out to be directly proportional to Crow’s expression 
for ( + * ( O ) ) ,  which was estimated (ref. 8) to be of the order of lo8. Thus 
the number of microshocks is expected to be enormous. However, this 
value will certainly be reduced Gust how much is an unsolved problem) 
because of the tendency of nonlinear effects to cause individual shocks 
to coalesce with increasing propagation distance. A similar calculation 
(which also ignored nonlinear effects) of the probability distribution of 
pressure jumps in the individual microshocks shows that the vast 
majority of the microshocks are extremely small. 

The statistical model proposed to explore the quantitative implications 
of the wavefront-folding mechanism on sonic boom signatures was that 

t=O 

At 

2 A t  

4 A t  

FIGURE 6.-Sketch showing the phenomenon of wavefront folding at a caustic. The symbol 
L.S. denotes the logarithmic singularities predicted by linear acoustics when the incident 
shock has an ideal jump. 
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TIME \ 

FIGURE 7.-((a) Sketch of a multifolded shock front. (b )  Possible sonic boom signature 
corresponding to the passage of a multifolded shock. 

represented by the Kirchhoff-Fresnel diffraction formula (ref. 22), whose 
use in the present context may be explained as follows. 

The actual signature of the boom at any given point may be regarded 
as a function of the time history of the acoustic pressure on a surface 
at some intermediate altitude separating the flightpath and the micro- 
phone location. In the geometrical acoustics approximation, only the 
time history at one particular point (which lies on the ray connecting 
the surface and the microphone) governs the time history at the micro- 
phone. In general, this is not the case and it may be more appropriate 
to regard the signature as being affected by the time history of points 
within an extended region of the surface. In the simple case, for example, 
when the intervening medium is homogeneous, the acoustic pressure 
p at r is given by the Kirchhoff-Fresnel diffraction formula 

where the integral extends over all points r o  on the surface So. The 
angle 8 is that between the surface’s normal and the nominal propaga- 
tion direction. Here the acoustic pressure p(r0, tret) in the integrand 
should be evaluated at the retarded time 
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A relation similar to  equation (3 )  may be derived for the case when the 
intervening medium is inhomogeneous. An approximate relation for 
this case would be that where the retarded time is regarded as 

where ttr(ro, r) is the acoustic travel time between ro and r. Equation (3) 
ignores the presence of the ground, but this is easily taken into account 
for the case of a microphone on the ground if equation (3)  is multiplied 
by a ground reflection factor K ,  -- 2 and if the pressure p(ro, tret) in 
the integrand is interpreted as that due only to the incident shock. 
(Just how eq. (3) should be modified to take into account nonlinear 
effects is at present not understood, although it is expected that many 
of its predictions should not be appreciably altered by nonlinear effects.) 

If the incident pressure p(ro, tret) at each point r0 on the surface has a 
definite onset time to,(ro) (which should be the case for sonic booms), 
then the earliest time a disturbance is received at r will be 

t m i n =  min {ton(ro) + ttr(ro. r)) (6) 

For times t shortly after tminr the domain of points ro for which the in- 
tegrand in equation (3) is nonzero may be expected to be relatively small. 

FIGURE 8. - Shadowgraph taken by Bauer and Bagley of a hallistic-range-generated shock 
wave advancing through a turbulent boundary layer. (The wall is on the right and the 
shock is moving toward the upper right-hand corner.) T h e  projectile (a sharp-nose 
machined projectile of 0.457-in. diameter) was moving at a Mach number of 2.55. 
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In this case, the integral gives just the geometrical acoustics result (to 
the same approximation as is implied by the adoption of equation (3)).  
The later arrivals are affected, however, by progressively larger domains 
of the surface So and thus tend to average out any effects caused by small- 
scale variations of p(rO, tret) along the surface SO. 

In the subsequent development of a statistical theory, the travel time 
tt, was interpreted as a random variable that could in principle be cal- 
culated were the detailed state of turbulence known. The surface SO was 
selected sufficiently high in altitude that the incident pressure wave- 
form p(r0, tret) could be considered as undisturbed by turbulence and 
consequenriy considered as a ~ I I V W I I  luriciioii. Tu irrzke the iiiziheiiiaiics 
tractable, the travel time fluctuations were taken as first order in A u  and 
Ac. The appropriate expression for Attr was determined by the require- 
ment that the total integral, equation (3) ,  should a p e e  with first-order 
scattering theory in the limit of infinitesimal A u  and Ac. The resulting 
expression for p(r, t )  then turned out, for arbitrary Au and Ac, to be in- 
dependent of the choice of the surface SO, providing that it was at an 
altitude above the turbulent boundary layer. Since p(rO, tret) is not 
necessarily linear in tret, the adiabatically perturbed expression for 
p(r, t )  was not necessarily of first order (or of second order, etc.). 

A computation based on this model was undertaken of the ensemble- 
averaged waveform signature, the average being taken with the time 
origin of individual sample signatures shifted so that each sample first 
becomes nonzero at t = 0. The surprising result of this computation was a 
relatively long precursor (with a duration of the order of 12t,), which pre- 
ceded the main arrival. The rise time of the main arrival (based on maxi- 
mum slope) turned out to be of the order of 2te or 3t,. This would appear 
to substantiate Crow’s conjecture concerning the rise times, although 
there is very little basis for supposing the average rise time of sample 
signatures to be the rise time of the averaged sample signature, even 
with the time origin shifted as described above. In retrospect, the compu- 
tation would appear to give more information about the time duration of 
the precursor. Nevertheless, the model is sufficiently complete that im- 
proved calculations with time origin selected so that all sample signa- 
tures attain (1/2) Ap0 at the same time can be made. It may be necessary 
to resort to Monte Carlo calculations, however. 

CONCLUDING REMARKS 

At present, there appears to be little widespread agreement on the 
details of sonic boom distortion by atmospheric turbulence, although an 
extensive catalog of systematic empirical knowledge has been obtained 
in field tests. Each of the phenomena of refraction, focusing, and of wave- 
front folding would appear to be an integral part of the distortion proc- 
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ess. Each of these effects have apparently been observed, either in 
field tests or in laboratory simulation studies. On the other hand, there is 
some question as to whether the concept of scattering is a viable concept 
for the description of sonic boom distortion. Although it is clear that any 
distortion process may formally be attributed to scattering, it would ap- 
pear unnecessarily awkward to describe travel time deviations, refrac- 
tion, or focusing in terms of scattering. 

Although the theoretical development is currently in a state of flux, it 
seems at present that the one meteorological parameter that best sum- 
marizes the atmosphere’s gross state of turbulence, insofar as sonic 
boom distortion is concerned, is Crow’s characteristic time tc. Tech- 
niques for measuring t ,  should therefore be given some consideration. 
As for the general prediction that tc governs waveform variability, an 
experimental check is still lacking. 

Another question that remains unresolved is the extent of the role of 
nonlinear effects in waveform distortion. 

In conclusion, one cannot state at this time that the topic of sonic 
boom interaction with turbulence is well understood. Instead, it is an 
active area of current research in which progress is rapidly being made. 
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Studies in the Diffraction of a Pulse by a 
Three-Dimensional Corner* 

Lu TIN(; AND FANNY KUNC 
New York University 

The present investigation is motivated by the study of the effect of 
sonic boom on structures. The pressure wave created by a supersonic 
airplane is three dimensional in nature. However, the radius of curvature 
of the wavefront is usually much larger than the length scale of a struc- 
ture. Therefore, the incident waves can be approximated by progressing 
plane waves with an N-shape waveform and are referred to as N-waves 
as shown in figure 1. 

For two-dimensional structures in the shape of a rectangular block, 
the diffraction of a plane pulse by the first corner is given explicitly by 
the two-dimensional conical solution of Keller and Blank (ref. 1). The 
solution for each subsequent diffraction by the next corners can be ob- 
tained by the use of Green’s function for a wedge (ref. 2). For right-angle 
corners, the diffraction solutions can be obtained by the solution of an 
Abel-type integral equation (ref. 3). By means of the integral of Duhamel, 
the solution for the diffraction of a plane pulse by a two-dimensional 
structure was used to construct the solution for the diffraction of an 
N-wave by the same structure (ref. 4). 

For the three-dimensional problem of the diffraction of sonic boom by 
structures, the first step is the construction of the solution for the diffrac- 
tion of a plane pulse by a corner of a structure. By the decomposition of an 
N-wave to plane pulses, the solution for the diffraction of an N-wave by a 
corner will then be constructed. 

The results presented here contain the highlights of two reports (refs. 
5 and 6). One deals with the construction of a three-dimensional conical 
solution (ref. 5), and the other deals with the use of the conical solution 
for the computation of pressure distributions on the surfaces due to a 
N-wave of any waveform and at any incident angle (ref. 6). Both reports 
contain detailed analyses and the relevant numerical programs. 

*This research has been carried out under NASA grant N(;L-33416-110. 
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1 
PLANE WAVE 

reo 
FIGURE 1. -Incidence of a plane wave on a corner. 

REFLECTION AND DIFFRACTION BY A CORNER 

For a plane pulse incident on a three-dimensional corner, the disturbed 
regions behind the incident plane wave are a simple reflection from the 
surface of the corner, a two-dimensional diffraction by an edge, or the 
three-dimensional diffraction by the vertex. The last region is confined by 
a sonic sphere centered at the vertex. 

Figure 2 shows a normal incidence of a plane pulse on a corner OABD. 
The plane is moving parallel to edge OB; i.e., normal to face OAD. The 
incident wave is therefore reflected by face OAD with double intensity. 
The diffraction by edge OA or OD is confined by a circular cylinder of 
radius Ct from the edge, where C is the speed of sound. Outside the 
sonic sphere around the vertex 0, the disturbance is two-dimensional 
conical with respect to time. The cross section of the wave patterns nor- 
mal to the edge is shown in figure 3 together with the boundary condi- 
tions. The solution is given explicitly in reference 5, based on the analysis 
of reference 1. The boundary data on the sonic sphere r = C t  about the 
vertex are thereby obtained, and the three-dimensional conical solution 
with respect to time inside the unit sphere [ = r / C t =  1 can be 
constructed. 

Figure 4 shows an oblique incidence of a plane pulse on a corner OABC. 
On each face there is a reflected plane wave (shown for face OAD only). 
On each edge there is a diffracted wave confined inside a cone, with ver- 
tex located at the intersection of the plane pulse with the edge, and tan- 
gential to the adjacent reflected plane wave and the sonic sphere about 
the vertex of the corner (not shown for edge OB). The solution inside the 
cone and outside the sonic sphere is again given by the two-dimensional 
conical solution with respect to the distance from the vertex of the cone 
(ref. 1). Figure 5 shows the wave pattern at a cross section of the cone and 
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the boundary conditions. Explicit solutions are ghen in reference 6. The 
boundary data on the unit sphere (=r lC t  are again prepared. The nu- 
merical program in reference 6 is capable of defining the various regions 
for any incident angle and carrying out the computation of disturbance 
pressure accordingly. In the next section the essential procedures for the 
determination of the three-dimensional conical solution inside the unit 
sphere (= 1 are described. 

1 
\ 

< 
/ 

So": 
CIRCLE 

INCIDENT PLANE PULSE 

--\ 

I Dl 

SONIC CIRCLE 

REFLECTED PLANE 
PULSE 

FIGURE 2. -Plane pulse incidence head on to face OAD, the reflected plane pulse, and the 
diffracted fronts around edges OA, OD, and vertex 0. 
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E 

(a (b) 
FIGURE 3. -Two-dimensional conical solutions around edges OA and OD. (a) Section normal 

to edge UA. (6 )  Section normai to edge OD. 

THREE-DIMENSIONAL CONICAL SOLUTION 

For the acoustic disturbance pressure p ,  the governing differential 
equation is the simple wave equation 

in the region outside a trihedron simulating the corner of a structure. 
As shown in figure 1, two edges, OA and OB,  of the trihedron are in the 
x, y-plane and are bisected by the negative x-axis with half angle a and 
the third edge OD, which is the negative z-axis with the vertex 0 as the 
origin. Let t = O  be the instant when the pulse front hits the vertex. The 
boundary condition on the three faces of the trihedron is 

The three-dimensional disturbance due to the vertex is confined inside 
the sonic sphere r =  Ct, where r= (x'+ y' +z2) ' In .  On the sonic sphere, 
the pressure distribution is given as described in the preceding section. 

Because of the absence of a time scale and a length scale, the dis- 
turbance pressure p nondimensionalized by the strength of the incident 
pulse should be a function of the three-dimensional conical variables, 
x /Ct ,  y /C t ,  and zlCt or be given in terms of the spherical coordinates by 
t=  r/Ct,  8, andcp. The simple wave equation forp(t,  8, cp) becomes 

inside the unit sphere <= 1 and exterior to the trihedron. The boundary 
conditions are 

ap/d8=0 on surface OAB, 8 = ~ / 2 ,  - ( r - a )  <cp < r - a  (4)  
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dplacp = 0 (5a) 

dpldcp=O on surface OBD, cp=-rr+a, rrI2 < 8<rr  (5b) 

on surface OAD, cp = rr - CY, rr/2 < 0 < rr 

and p = F ( 8 ,  cp) on unit sphere 5 =  1 outside of the trihedron. 
To construct the solution by the method of separation of variables, the 

usual trial substitution p ( 5 ,  8, cp) =Z(()C(p,  cp) is introduced where 
p = c o s  8 and equation (3) becomes 

5"(1-(;')Z"(5)+2(1-~2)gZ'(5) -A(A+l)Z(S)=O (6) 

0, and for 1 > 5 

Differential equation (7) and the boundary conditions, equations (4) and 
(S), define an eigenvalue problem. 

The solution of the eigenvalue problem itself can be formulated for a 
wider class of corners as shown in figure 6. The surface OAB is a conical 
surface with 8=p,  and the two surfaces OAD and OBD are planes with 

B' 

3-D CONICAL 
SOLUTION 

FIWRE 4. -0hliqiie inridenre on il rnmer, 

420-093 0 - 71 - 12 
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/ 
FIGURE 5. -Two-dimensional conical solution around ith edge. 

cp = rr - a and cp = - rr + a, respectively. The bound3.Ay conditions for the 
solution of equation (7) are 

The eigenvalue problem is now defined by differential equation (7) and 
the boundary conditions of equations (8a) through (8d). To reduce the 
problem to that for a set of algebraic equations, two representations of 
the eigenfunction G ~ ( P ,  c p )  associated with the eigenvalue A will be 
sought, one for the region R +  with p > po and the other for R -  with p < p~ 
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(fig. 7). These two solutions and their normal derivatives will be matched 
across the dividing line p = h  for lcpl < r-a. 

For the upper region R + ,  the eigenfunction Gh+(p, cp), which is pe- 
riodic in cp because of equations (8c) and (8d), can be represented by the 
Fourier series in cp with period of 2 r :  

G i ( p ,  cp)=  ArnP,i”’(p) COS mcp+ BmPhJJl(p) sin mcp (9) 
m = o ,  I , .  . . m = 1 , 2 , .  . . 

For each m, equation (7) yields the Legendre equation for P,iJ)l(p) 

d [(l-p2) - P p ’ ( p )  d P p ( p ) = O  (10) 
dP 

Because equation (9) is defined for 1 po > - 1, PirJ1  should be 
finite at p= 1. PT’” is therefore identified as the generalized Legendre 
function defined by 

p 

where F denotes the gaussian hypergeometric function. 
p < c*), the eigenfunction G,, 

which fulfills the boundary conditions of equations (8b) and (8~1, can he 
expressed as 

For the lower region R - ,  i.e., - 1 

G,i(p, cp) = CjP,iYj(-p) cos vjcp+ DJ’,icj(-p) sin ijjcp 
j = O ,  I , .  . . j=1, 2 , .  . . 

(12) 
where @ = Z ( T - - C Y ) ,  vj=ZjT/Q,, andCj= ( Z j - l ) r / Q , .  

Equations (10) and (12) fulfill the differential equation (7) and the 
boundary conditions (8b) and (8c) appropriate for regions R +  and R - ,  
respectively. The remaining boundary conditions, equation (8a) and the 
matching condition across the dividing line of R +  and R - ,  can be writ- 
ten as 

G,+(pu,+, c p ) = G ~ ( p t ,  cp) for lcplc T--(Y (13) 

dG,i(p,, v) / i jp for r-a 
iG,’(p,J, cp)/i/p= I (14) 

(C! fGr z-cx <jcp/S n- 

Equations (13) and (14) can be reduced to a system of linear homoge- 
neous algebraic equations for the unknown constants A,, B,, and E, 
by Fourier analysis, and the uncoupling of the even and odd solutions 
will also come about automatically as follows. 
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L 

D 

FIGURE 6. -Sonic sphere and the three-dimensional corner. 

E 
PERIODIC 4 I I  PERIODIC 

5'0' 
-I 

FIGURE 7. - Eigenvalue problem in 4, I.L plane. 



the function Z , ( ( )  of equation (6). For each corner they are determined 
once. They are tabulated in reference 5 for the corner of a cube 
(Za - n-/2 and /3 = 4 2 ) .  

Figures 8 and 9 show the pressure distribution on the surface due to 
' the normal incidence of the plane pulse sketched in figure 2 (detailed 

analysis given in ref. 5). 
Figure 10 shows the pressure distribution on the surface due to the 

oblique incidence of a plane pulse at an equal inclination to the edges. 
It should be noted that the nondimensionalized pressure distribution 

at the vertex is always 8/7, and the value along the portion of the edge 
lying outside the sonic sphere is always 413. These values are independ- 
ent of the incident angle of the plane wave. 

This phenomenon can be explained and predicted by the theorems 
stated in the next section. 

MEAN-VALUE THEOREMS FOR DIFFRACTION BY A CONICAL SURFACE AND APPLICATIONS 

In this section, two theorems will be stated, the  conditions under 
which the theorems are valid are emphasized, and their applications will 
be explained in detail. Proofs for the theorems are presented in refer- 
ence 5. 

Let t = O  be the instant when an acoustic incident wave c p ( i )  hits the 
vertex of the cone located at the origin. Let T be the finite time interval 
such that for t - T the incident wave dnes not hit the conica! surfacc. 
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FIGURE 8. -Overpressure along constant 8 lines on face OAD (4= 37r/4), shock advancing 
along OB. 

, 

Let D ( t )  denote the domain outside of which the incident wave vanishes 
at the instant t ;  e.g., p(i )  (x, y, z, -T) = O  for (x, y, z) not in D(-T). 
Domain D ( t  c -T) does not intersect the cone G' with solid angle a,  as 
shown in figure 11. 

In the absence of the cone, the incident wave q(i) at the origin can be 
related to the initial data at an instant t = to < - T by the Poisson for- 
mula (ref. i'), 
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Q4 

0.2 

0. 

where r is the distance from the origin, f ( x ,  y, z) =(pi(x,  y, z ,  - - t o ) ,  

g ( x ,  y , ~ )  = p ~ i ) ( ~ , y , ~ , - t ~ ~ ) , a n d S i s  the sphere with rad iusR=C(t+to)  
> C ( t +  T) and with its center at the origin. 

In the presence of the cone, the incident wave will be reflected and 
diffracted by the conical surface. The resultant pressure at the vertex 1 p(0, 0, 0, t) is related directly to the incident wave by the relationship 

’ 

1 

V 
J 

~ CONICAL SOLUTION CONICAL SOLUTION - 
2 -DIMENSIONAL 
I\ 

3- DlMENSlONAL 

r/(Ctl 

as a consequence of theorem I, which is discussed in the following 
section. 
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FIGURE 10. -Overpressure due to oblique incidence at equal inclination to the edges of the 
corner. 

Theorem I 

Theorem I states that the resultant value at the vertex of a cone with 
solid angle SZ is equal to 47r/(47r-a) times the incident wave at the 
vertex if a finite T can be found such that the incident wave hits the coni- 
cal surface within the time interval T prior to its encounter with the 
vertex of the cone. 

In a practical problem, the conical surface, which forms a part of the 
surface of an obstacle, has a finite length L. In applying the theorem, it is 
essential that the part of the obstacle inside the sphere S with radius 
C ( t  + T )  is conical; i.e., 

C ( t + T )  < L 
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This defines an upper bound for T. On the other hand, for a given T 
with CT < L, the inequality defines an upper bound for t for which 
equation (15) holds. 

With theorem I, the numerical results obtained in the preceding sec- 
tion for the overpressure at the vertex and along the portion of the edges 
outside the sonic sphere can be explained. 

Figure 12(a) shows a wave incident on a two-dimensional right corner. 
1 As in a cone, the solid angle 0 at the corner P is 1/4 of the whole space; 
1 i.e., R =  T. Theorem I yields I 

' With 1 in the preceding section, q ( B ,  t )  =4/3. It holds for any 
incident angle at any point P on the edges of the three-dimensional 
corner OABD of a cube prior to the arrival of the disturbances from the 
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(a ) (b) 
FIGURE 12.- Application of theorem 11. (a) Intensification fa tor for two-dimensional 

c ~ i i i e i  = 45;/3z - !/3. (b )  !ztezsif?catic: factor for three-dimensinnal corner = [ 4 ~ / ( 7 ~ / 2 ) ]  
= 8/7. 

Figure 12(b) shows a wave incident on the corner of a cube OABD. 
The solid angle at 0 is 1/8 of the whole space; i.e., 0 = rr/2. Theorem I 
yields the value at point 0, 

With @= 1 in the preceding section, q(0, t )  =8/7.  This value holds 
for any incident angle until the arrival at point 0 of its diffracted waves 
from the adjacent corners of the cube. Let nj, j =  1 , 2 , 3 ,  denote the direc- 
tional cosine of the normal of the plane pulse with the three edges 
OA, OB, and OD and Lj denote their lengths. The time of arrival at 0 of 
diffracted waves from an adjacent corner is ( 1  + nj) Lj/C. Therefore 
equation (18) is valid for t < minimum of ( 1  + nj)Lj/C, j =  1 ,  2 ,  3. 

When an incident wave is diffracted first by a part of the surface of 
the obstacle other than the conical surface of finite length L ,  condition 
(16) cannot be fulfilled. Even for a cone of infinite length, the incident 
pulse may be in contact with a part of the conical surface all the time. 
Consequently, the finite time interval T assumed in theorem I does not 
exist. For both examples, the value at the vertex of the cone cannot be 
related directly to the incident wave by theorem I. Therefore, a theorem 
relating the value at the vertex of one cone to that of another cone will 
be presented. 

Figure 13(a) shows the relative orientations of two cones, G1 and GS, 
with solid angles a, and Qz. Their vertices coincide at the origin, and 
their boundaries dG1 and iJGn have a common region OAB as shown. 

Let cpl(x, y, z ,  t )  denote the resultant of an incident wave cp(;) and its 
reflected and diffracted waves by the cone GI along with i,cpl/dn=O on 
the surface of the cone dG,. D l ( t )  denotes the domain outside of which 
(p1=0 at the instant t. At t = O ,  the origin lies on the boundary of D l ( t )  
and D1 ( t )  does not contain the origin for t < 0. 
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It will be assumed that there exists a finite time interval T such that 

- 2') is in partial contact with the cone GI only over the 

1 Figure 13(c) shows the same resultant wave pl(x, y, t, t) being dif- i fracted by cone Gz. The domain D1 (t =S - 2') is in contact with cone G, 
' only over the surface OAB. The values at the vertex of the cone in both 
' cases (figs. 13(b) and 13(c)) are related by theorem 11, which is discussed 1 in the following section. 

the domain D ( t  
surface OAB as shown in figure 13(b). 

0 

(a 

WAVE FRONT AT 18-T 

FIGURE 13. -Comparison of two cones. (a )  Relative orientation of two cones. ( b )  Wave 4, 
incident on cone Gt. (c) Wave 4: inriden! on cone GB. 
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FICIIRF 14. - Appliration of theorem 11. (a) Two-dimensional corner. ( b )  Extension of 
side OA. 

Theorem II 

Theorem I1 states that for two conical surfaces iK, and iK,, with the 
same location for the vertices and with the same initial data cp =f(x, y, z) 
and cpt=g(x, y, z )  at the instant t = -  T < 0, the resultant disturbance at 
the vertex for each cone alone is inversely proportional to the exterior 
solid angle of the cone if the support D off and g does not intersect either 
one of the cones and if the part of the boundary aD that is common to one 
of the conical surfaces is also common to the other. 

This theorem will now be applied to a simple two-dimensional prob- 
lem. Figure 14(a) shows an incident plane pulse of strength E and its 
reflected wave from the horizontal surface OA advancing over a right 
convex corner 0. Point 0 can be considered as the vertex of cone G2 

with solid angle & = 4 ~ / 4 .  Figure 14(b) shows the same incident and 
reflected wave advancing over the same horizontal surface OA and ex- 
tended beyond point 0. In this case there is no disturbance when the 
waves pass over point 0 at t =  0. The pressure at point 0 is 2 ~ H [ t ] ,  where 
H is the Heaviside function. Point 0 can be considered as the vertex of 
cone GI (fig. 14(b)) with solid angle fll =4~r/2.  According to theorem 11, 
the pressure p z  at the vertex 0 of cone Gz in figure 14(a) is 

Figure 4 shows another example in which theorem I1 can be useful. 
The diffraction by the edge OA is confined in the cone tangential to the 
sonic sphere with vertex V. The distance OV is Ctln, where n is the direc- 
tion cosine of the normal to the plane pulse with edge OA. 

In the absence of a corner at point A ,  the surfaces OAB and OAD will 
be extended beyond AB' and AD',  respectively. The conical solution 
p c  developed in the section on the three-dimensional conical solution 
is not diffracted at point A and remains valid when point V passes ovei 
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A ;  i.e., for t >IOAln/C. Point A in this case can be considered as the 
vertex of a cone G1 with solid angle R1= 4744 = 77. 

With a corner at point A ,  the conical solution p ,  is diffracted at A 
' when point V passes over A.  Point A can now be considered as the vertex 
I of the cone G1 with solid angle R 2 = 4 ~ / 8 = ~ / 2 .  The resultant pressure I at vertex A due to the diffraction of the conical solution from 0 is u ven 
1 by theorem I1 as 

P ~ ( A ,  t ) = ~ l ( A ,  t)(477--1)/(477-fL)= (6/7)pc(A, t )  (19) 

for t>lOA(n/C 
In particular, before the arrival of the sonic sphere at point A ,  it is known 
from theorem I or equation (17) that 

P c U ,  t )  = (4/3)€ 
Hence 

p . ( A ,  t)= ( 8 / 7 ) ~  for IOA I/C > t > I OA I n/C 

Of course, this result for p2 (A, t )  should be modified whenever an addi- 
tional diffracted wave from another corner arrives at A. 

It is obvious that when the wave equation has an inhomogeneous term 
h(x, y, z ,  t )  that represents an interior source distribution, similar con- 
clusions can be obtained. 

Corollory 

The corollary of these two theorems states that they will also be valid 
for solutions of inhomogeneous wave equations Ap - C-4ptt = h (x, y, z ,  t )  
if the support E ( t )  of h(h 0 outside E) does not intersect the cone or 
both cones, respectively. 

An interesting application for theorem I and the corollary is the initial- 
and boundary-value problem for an inhomogeneous wave equation in the 
interior of a conical surface aGc with solid angle R, (or the exterior of a 
cone G' with solid angle R = 47r - R, > 277). The mathematical problem 
consists of the following differential equations (D.E.), boundary condi- 
tions (B.C.), and initial conditions (I.C.): 

(D.E.) Ap-C--aptt=h(x, y, z ,  t)  

(B.C.) cpn=O on dG, 
inside the cone G, for t > 0 

(1.C.) cp =fb, Y, z ) ,  pt = g ( x ,  Y, z )  at t =  0 

From the definition of the problem both the support E of h and the sup- 
port D off and g lie in G, and therefore do not intersect G'. Theorem I and 
the corollary state that the value at the vertex, cp(0, 0, 0, t ) ,  is related to 
the initial-value problem 'psD(O, 0; 0, t )  h r  the inhorr?ogeneous wive 
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equation in three-dimensional (3D) space with the removal of the conical 
surface by an amplification factor equal to the local enlargement in solid 
angle 47~/LRr; i.e., 

where [ ] denotes the retarded value, S& is the part of the spherical 
surface inside the support D off and g, and S: is the part of the spheri- 
cal surface inside the support of [h]. The spheres are centered at the 
origin, and the subscript denotes the radius. 

It is of interest to note that the value at the vertex of the cone is 
independent of the geometry of the cone G, and does not depend on the 
distribution off,  g, and h and their supports D and E with respect to 
the spherical angles 8 and cp so long as the integrals off, g,  and h over 
the spherical surface are invariant as functions of r and t .  This corollary 
is useful in determining the noise intensity along corners or edges of a 
cavity or of a room with interior acoustic source distribution. 

GENERAL INCIDENT WAVE 

The incident wave due to the sonic boom can be locally represented as 
a plane wave because the length of a structure is usually much smaller 
than the radius of curvature of the wavefront. The waveform 9 is in 
general a sequence of a weak shock wave and an expansive wave or 
a compression wave as shown in figure 1. 

The conical solutions developed earlier in this paper for an incident 
plane pulse now will be employed to construct diffraction solutions for 
an incident wave of a more general type by superposition of plane pulses. 
In particular, when the incident wave is a plane wave of the type 

with 

where the waveform 9 is an arbitrary function of its phase q, and 
nl,  n2, and n3 are the direction cosines of the normal to the plane wave. 

If the waveform is a Heaviside function, the diffraction due to the 
three-dimensional corner is given by the preceding conical solution anc 
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will be designated as p * ( r / C t ,  8, cp). The solution of the diffracted wave 
corresponding to a general waveform of a sonic boom is 

where qi is the phase of the ith shock wave with strength (Ap)i = +(qi+O) 
- $(qi - 0). Note that q increases in the direction opposite to the normal 
of the plane wave. 

A numerical program is presented in reference 6. For given input data 
of the direction cosines and the waveform +(q) of the incident plane 
wave, the numerical program automatically defines the various regions 

CONCLUSIONS 

This paper presents the main points of references 5 and 6: 
(1) The conical solution for the diffraction of a plane acoustic pulse 

by a three-dimensional corner of a cube is obtained by separa- 
tion of variables, as outlined in this paper. The detailed analy- 
sis, the eigenvalues, and eigenfunctions are presented in 
reference 5. 

(2) A complete numerical program is presented in reference 6 to 
yield the resultant pressure distribution on the surfaces of the 
three-dimensional corner due to an incident plane wave with 
any incident angles and waveform. 

(3) Mean-value theorems are derived in reference 5 for solutions of 
wave equations so that the resultant value at the vertex of a 
cone can be related to the incident wave or the value at the 
vertex of a different cone. These theorems are useful to extend 
the knowledge of the conical solntinns to the adjacent ccmers 
or edges. Their applications have been presented in this paper, 
and additional ones can be found in reference 5. 
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Preliminary Numerical Investigation of Sonic Boom at 
Threshold Mach Numbers 

THOMAS J. COAKLEY 
NASA Ames Research Center 

It is widely held that sonic boom constitutes a major obstacle to the 
successful implementation of supersonic air transport. Over the past 
decade since sonic boom was first recognized to be a serious problem, 
no absolutely conclusive design concept has been proposed that will 
reduce the boom to publicly acceptable levels. The current philosophy 
with regard to the supersonic transport (SST) under development at the 
Boeing Co. is to fly it supersonically over water but subsonically over 
populated land areas. A variation of this concept is the so-called thresh- 
old operation in which the airplane is permitted to fly supersonically over 
land but at Mach numbers only slightly in excess of unity. In this case, 
the shock system or sonic boom created by the aircraft does not propa- 
gate to the ground, but instead is reflected in the atmosphere because 
of a positive temperature gradient toward the ground. (See fig. 1.) The 
principal advantage of threshold operation as compared with subsonic 
operation is an increased ground speed of about 25 percent. 

The aircraft Mach number at which the sonic boom just reaches the 
ground is called the threshold Mach number (fig. 1). Because of local 
and uncertain variations in atmospheric winds and temperatures, the 
threshold Mach number is not constant but varies (e.g., between 1.1 and 
1.2) over a typical transcontinental flight track. Because it is desirable 
to fly the airplane at a relatively constant speed, as close as possible to 
the estimated threshold Mach number, there generally will be locations 
on the flight track where the sonic boom propagates to the ground. If 
the threshold Mach number drops substantially below the aircraft Mach 
number, the reflection at the ground will be simple. The maximum sonic 
boom overpressure can then be predicted by linear theory as schemat- 
ically illustrated in the lower sketch of figure 1. On the other hand, if 
the threshold Mach number becomes equal to or slightly less than the 
flight Mach number, there will be an irregular ground reflection, the 
details of which are largely unknown. Sonic boom overpressure charac- 
teristics that might be considered favorable and unfavorable for flight 
in this regime are shown by the dashed curves in the lower sketch of 
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FIGURE 1. - Sonir boom characteristics for flight near the threshold Mach number. 

figure 1. It is possible that the overall feasibility of threshold operation 
may depend on the unknown details of these curves, and it is these 
details that we propose to investigate by applying the methods of 
computational fluid dynamics. 

FORMULATION 

In mathematically modeling a real flow problem, one must make 
simplifying assumptions. The assumptions pertinent to this investigation 
are as follows: First, w e  restrict our attention to a vertical plane of 
symmetry containing the airplane, for it is in this plane that maximum 



i assumptions appear to be sufficient to reduce the problem to plane or 
two-dimensional channel flow of a compressible perfect gas. 

The physical flow model is depicted in figure 2. The frame of reference 
has been taken fixed with respect to the airplane, and the flow config- 
uration has been turned upside down from that of figure 1. This has been 
done strictly for convenience in presenting results. The incoming wave 
or disturbance is represented by a given flow deflection angle O(x) at 
the lower streamwise boundary of the channel. 

The upstream boundary conditions are taken to be uniform steady 
parallel flow with given velocity and temperature distributions in the 
y-direction. In addition, gravitational forces are ignored so that the 
upstream pressure may be assumed constant. The boundary condition 
at the upper wall is that the normal component of velocity v be zero, 
while at the lower wall the ratio of this component to the tangential com- 
ponent u is given by the tangent of the local flow deflection angle O(x). 
The dividing streamline is specified by the function y(x), with y’ ap- 
proximately equal to tan O(x)  for small disturbances. For the tan- 
gential velocity, pressure, and temperature at the two streamwise 
boundaries, one-sided or inward differencing is used, which is the 
same as using the so-called reflection principle. These boundary condi- 
tions are equivalent to assuming that the normal gradient of the relevant 
variables at the two walls be zero. At the outflow boundary, a number of 
extrapolative boundary conditions have been used, the simplest of 
which is shown in figure 2. It is the simple shift condition in which the 
values of all flow variables on the outflow boundary are set equal to the 
values one mesh line in from the boundary. For initial conditions we use 
an impulsive start, that is, a uniform flow is assumed to exist in the chan- 
nel initially at which time the incoming disturbance or flow deflection 
angle is introduced impulsively. The resulting wave system propagates 
to the upper wall where it is reflected. In discussing results this wall 
will be referred to as the ground plane. 

The governing flow equations and the finite difference scheme used to 
solve them are discussed here. The flow equations are Euler’s inviscid 
equations expressed in conservation law fmm. The perfect-gas law is 
assumed and the total energy e is expressed as a function of pressure, 

1 



184 SONIC BOOM RESEARCH 

p ,  u. v. T at LX = 

p. u. v, T a t  Lx -Ax 

x. i Lx. NJ 
v(x.0, t) = tan.%) u (x.0. tl 

tan @(XI = dyldx 

FIGURE 2. -Problem definition. 

where 

and 

where 

and 
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In setting up this problem, a perturbation form of the differential 
equations is actually used in which the flow variables are expressed in 
terms of perturbations about their constant free-stream values. The 
result is a modified (but still exact) form of Euler's equations in which all 
unknown variables are small (assuming the incident disturbance to be 
small). The procedure avoids differencing two very nearly equal numbers 
and improves accuracy without resorting to double precision. 

U ( x ,  y , t ) + U j ) f k ;  t = n A t , x = j A x , y = k A y  

The second group of equations are the difference equations. They are 
given by MacCormack in reference 1 and constitute a variant of the 
second-order two-step Lax-Wendroff scheme described by Richtmeyer in 
references 2 and 3. In this method the continuous vector function 
U ( x .  y, t )  i s  replaced by a net function C $ y k  defined at the net points in 
space and time with t = n A t ,  x= jAx ,  and y =  kAy. Assuming a solution 
at the time step n is known, a conditional solution UIil at n+ 1 using 
one-sided differences is first found. Using this solution, a conditional 
solution ujI;2 at n f 2  is then obtained, reversing the one-sided differ- 
encing in j and k .  The final solution at the time step n+ 1 is obtained by 
averaging u,!lk and We note that this procedure must be modified 
somewhat if time appears explicitly in the functions F and G or if undif- 
ferentiated variables appear in the equations, as happens when curvilin- 
ear coordinates are used. 

The find expression is an artificial viscosity term, which may be used 
to smooth or stabilize solutions that otherwise would exhibit undesirable 
features such as precursor oscillations or overshoots near shocks. The 
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coefficients in this expression generally are functions of the flow variables 
U ,  but in our limited use we have given them relatively small constant 
values, O(10-2). In applications the artificial viscosity term is simply 
added to Uz+kl before proceeding to the next time step. 

RESULTS 

Some preliminary results using the method just described are shown 
in figures 3 and 4. In figure 3 we compare numerical solutions for a para- 
bolic arc profile with linearized supersonic flow theory. The upstream 

M =  fi. The thickness-to-chord ratio of the disturbing profile is 
t / c =  0.005, where t is the maximum value of y(x ) .  The numerical solu- 
tions are obtained on the relatively coarse net of 36 X 11 = 396 points 
with mesh ratio Ay/Ax= 1.0. The curves, shown in the upper half of the 

cuncliiiumi fui this ejtaiiipk ai-e iiiiiforiii isentropic ai z Miich iitimbei. 
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FIGURE 3. -Numerical solution for parabolic arc disturbance at Mach number fi. 
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FIGURE 4. -Effects of incident wave intensity and ground Mach number variations on 
ground pressure signatures. 
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figure, are for the pressure ratio at the reflecting wall or ground plane. 
The total number of time steps taken to advance the solutions was 300, 
and at this time the solutions had essentially converged to their steady- 
state values. The computing time for each solution was approximately 
8 min on an IBM 360-67 computer. 

The two numerical solutions shown in figure 3 illustrate some of the 
difficulties encountered in applying numerical finite-difference methods 
to flow problems involving discontinuities such as shocks. Consider first 
the solution for which artificial viscosity was not included (solid curve). 
In this case, there are relatively large precursor oscillations in front of 
the bow shock wave that compromise the quality of the soiution. 'These 
oscillations appear to depend in a complicated way on many factors 
chosen in the formulation and application of the difference method. A 
widely used remedy for this difficulty, which avoids numerical experi- 
mentation to determine optimal values of parameters (such as At/Ax and 
Ay/Ax), is the use of artificial viscosity. A typical solution using artificial 
viscosity is also shown in figure 3 (heavy dashed curve). From this result 
it can be seen that although the use of artificial viscosity does indeed 
reduce precursor oscillations and generally smooths solutions, it has the 
adverse effects of smearing out the shock wave over a larger number of 
net points (i.e., from two to three points) and reducing the maximum jump 
of the shock pressure ratio from its true value. From this, it appears that 
artificial viscosity does not improve solution quality to the extent that 
would warrant its use, at least in the simple formulation chosen for this 
investigation. 

The second example, shown in figure 4, is a more relevant application 
to the prediction of sonic boom at threshold Mach numbers. It represents 
a parametric study of the effects of incident wave intensity and ground 
Mach number variations on the pressure signature at the ground plane. 
The physical flow model is illustrated in the lower sketch of figure 4. It 
consists of a nonuniform upstream flow with a linear temperature gradi- 
ent adjusted so that the Mach number at the disturbance boundary is 
1.2, while at the ground plane it is given the values 1.0, 0.97 and 1.03. 
The upstream velocity is assumed constant across the channel width, 
and the mesh ratio is 2.0. The disturbance is assumed to be generated 
by a simple wedge with angle 8 ,  which is the parameter defining the 
incident wave intensity. The solid and dashed curves shown in the lower 
sketch are linearized characteristics of the flow at the three different 
Mach numbers and identify the theoretical positions of incident and 
reflected shock waves of vanishingly small intensity. 

The numerical solutions for the pressure signature at the ground 
plane are shown in the upper curves of figure 4. For these solutions, a 
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reflection off the wedge surface of the wave reflected at the ground plane. 
Another factor is the possibility of improper boundary conditions pri- 
marily for subsonic outflows, which will be discussed later. 

It should be noted that the quality of solutions in which the incident 
wave intensity is strong is inferior to the quality of weak wave solutions. 
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An additional run, not shown in figure 4, was made for uniform up- 
stream flow at a Mach number of 1.2 with 8-0.5". The solution, which 
was fully converged after 400 time steps, had practically the same ap- 
pearance and maximum pressure jump as the solution for M,= 1.03, 
but the location of the jump had shifted downstream. 

CONCLUSIONS AND FUTURE RESEARCH PLANS 

Because of the tentative and preliminary nature of our results, there 
are no firm conclusions to be reached concerning sonic boom signatures 

crude but indicate some trends to study and difficulties to be overcome 
in future work. One trend is that there appears to be no substantial 
change in magnitude of the reduced or relative pressure ratio as the ab- 
solute value of the wave intensity is changed, at least at a ground Mach 
number of unity. The principal effect of increasing wave intensity appears 
to be an upstream or forward movement of the signature which is known 
to occur for an irregular or Mach-type reflection with a uniform upstream 
flow. A second trend is that there does not seem to be a substantial dif- 
ference in peak overpressures as the ground Mach number is varied 
from 0.97 to 1.2, which is the prediction of linearized theory. Whether 
this effect is due to the relatively strong incident wave strength used 
(i.e., 0.5"), or to the coarseness of the mesh, or to some other cause, 
remains to be determined. It seems that an essential requirement for 
the numerical method be that it give reasonable predictions in those 
cases where linear (or exact) theory is applicable (or nearly applicable); 
this requirement will be respected in any final results. 

One area of considerable concern is the question of boundary condi- 
tions, especially at the upstream and downstream ends of the channel. 
It appears that the conditions used in this investigation are satisfactory 
in those cases in which the flow is wholly supersonic. In those cases in 
which the inflow or upstream flow is dominantly supersonic but contains 
a small region of subsonic flow at the reflecting wall, the solutions appear 
to be reasonable at  least up to the position of the leading pressure wave. 
However, we have found that flows that are wholly subsonic at the up- 
stream boundary are unstable. Similarly, for flows that are predom- 
inantly supersonic at the exit boundary but contain small regions of 
subsonic flow, the solutions are stable but take a relatively long time to 
converge (in the region of the exit boundary). For the case in which the 
outflow contains substantial subsonic regions (i.e., the M,= 0.97 case), 
the solutions either take an extremely long time to converge (i.e., greater 
than 1000 time steps) or are ultimately unstable. Clearly, our boundary 
conditions for subsonic and mixed flows must be improved. 

a: :t;rcsho!c! ?ilach cumbers. The srr!ntier?s shuwr? ir? figllre 4 are very 
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Experimental Studies of Sonic Boom Phenomena at High 
Supersonic Mach Numbers 

ODELL MORRIS 
NASA Langley Research Center 

The Langley Research Center has been engaged in research studies 
dealing with sonic boom generation and propagation phenomena for a 
number of years. Most of the past studies were concerned with sonic 
boom overpressures in the low or moderate supersonic Mach number 
range. For this Mach number range, substantial experimental data have 
been obtained and have been used to verify and refine current sonic boom 
estimation techniques (refs. 1 to 3). Results of these studies show existing 
theoretical methods to be effective in providing reasonably accurate 
predictions of sonic boom characteristics for Mach numbers up to about 
3.0. 

However, current interest in hypersonic aircraft configurations has 
created a need for information about sonic boom characteristics at higher 
Mach numbers for which, at present, very little experimental data are 
available. Therefore, several experimental investigations have been 
conducted in the Langley Unitary Wind Tunnel to obtain sonic boom 
data over a wider range of Mach numbers. This paper reviews some of 
the more recent research, which includes wind-tunnel and theoretical 
studies of a complex configuration in the moderate Mach number range 
and of simplified basic model shapes at high supersonic Mach numbers. 
First to be discussed will be results of an investigation of a complex 
airplane model for a Mach number range from 1.5 to 2.5. Then, results 
of tests on several slender bodies of revolution at zero lift covering a 
Mach number range from 1.4 to 4.63 will be presented. Finally, studies 
on two lifting wing-body models that deal primarily with the high super- 
sonic Mach number range from 2.3 to 4.63 will be presented. 

SYMBOLS 

A effective cross-sectional area 
C I ,  lift coefficient 
h perpendicular distance from model 
I model reference length 

193 
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M Machnumber 
p reference pressure (free-stream static) 
A p  
& 

a angle of attack 

incremental pressure due to flow field of model 
distance from bow shock to point on pressure signature meas- 

ured parallel to free-stream direction 

MODELS AND APPARATUS 

Photographs of the models used for the tunnel tests are shown in 
figure 1. The complex model configuration, shown at the top of the figure, 
was relatively large with an overall length of 6 in. The two slender bodies 
of revolution are shown on the left side of the figure; one model had a 
sharp-nose conical body, and the other model had a relatively blunt- 
nose body. The simple lifting wing models are shown on the lower right 
side of the figure. The slender delta-wing model (above) and the double 
delta-wing model (below) both had a length of 3 in. 

The measurement of sonic boom overpressures in the wind tunnel 
require special tunnel equipment and testing techniques that have been 
developed and used over a period of years for tests in the moderate 
Mach number range from about 1.2 to 2.0. Figure 2 shows a sketch of 
the wind-tunnel apparatus used for the present tests, which is basically 
the same as previously used except for some modifications that were 
found necessary for tests in the higher Mach number range. The model 
is sting supported by a remotely controlled actuator that permits longi- 

BOTTOM VIEW 
COMPLEX MODEL CONFN 

c-_ 
SLENDER BODIES OF REVOLUTION SIMPLE WING MODELS 

FIGURE 1. -Photographs of models. 
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a MECHANISM MODEL STING ACTUATOR 
(LONGITUDINAL MOTION) 

BOW SHOCK 
PERMANENT TUNNEL STING 

(LONGITUDINAL AND LATERAL MOTION) 

PRESSURE ORIFICE 
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FIGURE 2. - Wind-tunnel apparatus. 

tudinal positioning of the model. The a mechanism provides angle-of- 
attack variation of the model-strut combination. The pressure wave 
generated by the model is measured by the pressure probe assembly, 
which is mounted on the permanent tunnel sting. The tunnel sting pro- 
vides both longitudinal and lateral motion of the pressure probes. This 
motion coupled with the movement of the model provides for a wide 
range of survey positions. For the series of tests at high Mach numbers, 
it was found that the model-mounting equipment, which allowed for the 
measurement of interference-free sonic boom signatures at the lower 
Mach number range, would produce interference pressures that tended 
to blanket out a large portion of the model signature at the high Mach 
numbers. To separate the model signatures from the pressure field pro- 
duced by the (Y mechanism, an offset strut was employed, as shown in 
figure 2. 

For measurement of a particular signature, the probe position is fixed 
and the model is moved. A complete signature is built up point by point 
as the model is moved to successive positions. A complete signature 
usually may require from about 15 to 30 min of tunnel testing time. 

THEORETICAL CONSIDERATIONS 

For each of the measured wind-tunnel signatures to be shown in the 
following figures, comparisons have been made with calculated theo- 
retical pressures. The estimation techniques used for these calculations 
employ a number of machine computing programs that have been in 
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use for some time at Langley and consequently will be outlined only 
briefly as illustrated in figure 3. First, the geometry of the model is 
obtained from the model drawings, and numerical coordinates are 
used to define the model shape. With these inputs, the wave drag 
computer program is used to determine the area development of the 
models defined by supersonic area-rule Mach planes. Then the develop- 
ment of the wing lift is obtained using the wing lift computer program. 
With these input data, the sonic boom generation program may then be 
employed to determine theoretical pressure signatures for a given set 
of model conditions such as Mach number, separation distance, lift 
coefficient, etc. 

The F-function generated by the boom generation may be used as 
input data for the Hayes propagation program to calculate signatures 
in a nonuniform atmosphere. This program is quite useful in the pre- 
diction of airplane-generated signatures but is not required for the 
present wind-tunnel tests. A more complete description of these computer 
techniques is given by Carlson in reference 4. 

DISCUSSION 

Results of a comparison between the theoretical and experimental 
sonic boom pressure signatures are shown in figure 4 for a complex 
configuration at moderate supersonic Mach numbers. The test model 
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FIGURE 3. -Computer employment in sonic boom analysis. 
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FIGURE 4. -Complex configuration at moderate supersonic Mach numbers. (a )  Low lift. 
(b )  High lift. 

was iiiade i elaiively large io determine whether reasonable correlation 
could be obtained between the theoretical and experimental results for 
the near-field sonic boom signatures of a complex model. The model 
design incorporated a number of details of a large airplane configuration 
such as wing camber and twist, engine package installation, movable 
canards, and trailing edge controls. 

420-093 0 - 71 - 14 
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Data are shown in figure 4(a)  for an angle of attack of i" and a distance 
of four body lengths below the model. The signatures are plotted as a 
function of the pressure ratio Aplp versus the distance ratio Ax11 for 
Mach numbers of 1.5 and 2.5. Comparison of the experiment and theory 
show very good correlation at M =  1.5. For a Mach number of 2.5, the 
correlation is still reasonably good for the forward part of the signature. 
Some differences, however, are seen in the region of the tail shock. 

Figure 4(b) shows the comparison of the model signatures for the high- 
lift case, in which all conditions are the same for the model, except that 
the model angle of attack has been increased to 5.0". For this comparison 
it can be seen that the characteristic near-field signature shape is still 
present at M=1.5 with good correlation shown between the measured 
and the theoretical sonic boom overpressures. At M =  2.5, the measured 
signature is more fully developed and approaches a typical far-field 
N-shape signature. For this signature, it can be seen that the differences 
between the experiment and theory are larger, with the greatest differ- 
ence shown in the region of tail shock. Comparison with signatures ob- 
tained even closer to the model shows that the correlation of the theory 
and experiment improve with increased distance and indicates that 
good correlation would be expected at large distances comparable to 
flight altitudes. For this speed range, good correlation between experi- 
ment and theory has also been shown in other wind-tunnel tests and in 
flight-test programs. 

As the first step in an extension of the Langley wind-tunnel program to 
higher supersonic Mach number, tests were conducted on a systematic 
series of body shapes at  zero lift. Figure 5(a) shows a comparison of the 
signatures for one of these models, a sharp nose body of revolution. The 
test model has a slender, cone-shape body with an area development that 
is representative of the equivalent body of a supersonic transport con- 
figuration for the transonic region of flight. For this model, the signatures 
were measured at zero lift and at five body lengths below the model. 
Again the signatures are plotted as a function of the pressure ratio versus 
the distance ratio for Mach numbers of 1.41,2.96, and 4.63. At M = 1.41, 
the agreement between the experiment and theory is shown to be very 
good. This example is typical of the correlation between theory and 
experiment that has been shown for a number of test models in the low 
Mach number range from about M =  1.2 to M=2.0. However, with the 
increase in Mach number to 4.63, it can be seen that the theory tends to 
depart from the measured signatures, with the largest differences shown 
in the region of the tail shock. 

Figure 5(b) shows results of the test for a blunt-nose body of revolution 
for the same Mach number range and separation distance. Even though 
the theory would not be expected to show good results for a blunt-nose 
body of this type, agreement with the measured signatures was good at 
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FIGURE 5.-Bodies of revolution for a wide range of supersonic Mach numbers at a=O". 

( a )  Sharp-nose conical body. ( b )  Blunt-nose body. 

M =  1.41. However, at the higher Mach numbers, larger discrepancies 
are shown between the theory and experiment, as was previously noted 
to be the case for the sharp-nose body of revolution. From these signa- 
tures it can also be seen that the maximum sonic boom overpressure 
tend to increase with increasing Mach numbers and that the signature 
impulse, which is the integrated area under the bow-shock overpressure 
region, shows an even more pronounced increase in magnitude with 
increasing Mach number. 

As a second step in the extension of the Langley wind-tunnel program 
to higher supersonic Mach number, tests were performed on two simple 
wing models at various angles of attack. These tests were conducted 
to provide experimental data, which would be useful in studying lift- 
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FIGURE 6. -Simple slender delta-wing model at high supersonic Mach numbers. (a) Low 
lift. (b) High lift. 

induced sonic boom characteristics in the high-Mach-number speed 
range. Figure 6 shows a sample of the sonic boom measurements for 
one of these models, the slender delta-wing model. The overall model 
design was purposely kept simple to facilitate analysis. The delta-wing 
model had a subsonic wing leading edge with a sweep angle of 80" and 
an overall length of 3 in. The model was sized and built to accommodate 
a miniature strain-gage balance for accurate measurement of the model 
lift. For the sonic boom overpressures presented in figure 6(a), the 
measurements were made for a lift coefficient of zero at four body lengths 
below the model. The data for the overpressure plots show that reason- 

- 
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ably good agreement between the experiment and theory is obtained for 
each Mach number. However, the good correlation shown for this model 
at low lift does not hold for higher lift conditions. 

The signatures of the slender delta wing for high-lift conditions are 
shown in figure 6(b). For these plots, everything is the same as shown 
before, except that the model angle of attack was increased to about 
7" to obtain a lift coefficient of 0.10. For these sonic boom signatures, 
it is seen that the theory predicts the signature shape fairly well at 
M =  2.30, but as the Mach number is increased to M =  4.63, the agree- 
ment between theory and experiment becomes progressively worse. 
However, in spite of the large differences in signature shape, the maxi- 
mum values of sonic boom overpressures are predicted very well by the 
theory. 

A sample of data for the second model in this test series, a simple 
double delta wing, is shown in figure 7. This model had the same overall 
length as the slender delta-wing model but had a larger wing area with 
considerably more volume. The wing had a supersonic wing leading edge 
on the outer panel (a sweep angle of 60"). Signatures are shown for a 
lift coefficient of zero at four body lengths below the model in figure 
7(u). For this model, it can be seen that the agreement between the theory 
and experiment is not as good as shown for the slender delta wing, and 
the agreement tends to become poorer with increasing Mach number. 

Figure 7(b) presents data for the double delta wing for the high-lift 
case. For these overpressure signatures, the lift coefficient was ap- 
proximately 0.10. For this comparison, large differences are shown 
between the theory and experiment, particularly at M = 4.63, where it 
can be seen that the theory does not adequately describe the signature 
shape. For this signature, not only is there a large difference in the 
shape of the pressure decline in positive pressure region, but there is an 
appreciable discrepancy in the signature positive area. There are 
several possible reasons why the theoretical estimate shown for this 
model tends to break down at M = 4.63 for high lift. First, the model has a 
low fineness ratio. Then, the equivalent body fineness ratio is reduced 
even further for lifting conditions. As a result, for the close-in position 
shown here, the model-induced pressure variations are about 10 percent 
of the ambient pressure, a magnitude that may be too large to meet the 
small-disturbance assumptions of linearized theory. At larger distances, 
some improvement in correlation might be expected as  the overall pres- 
sure field disturbances become weaker and as the large distance ap- 
proximations of the theory become more applicable. However, in any 
case, the results indicate shortcomings in the present theory for the high 
Mach number range at lifting conditions and suggest that further study 
is needed in this area. 
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FIGURE 7. -Simple double delta-wing model at high supersonic Mach numbers. (a)  Low 
I lift. (b) High lift. 

i CONCLUDING REMARKS 

In summary, results of recent sonic boom wind-tunnel studies have 
been reviewed for several model configurations over a wide Mach number 
range. Comparisons of experimental and theoretical pressure signatures 
calculated by use of techniques derived from the work of Whitham and 
Hayes show good agreement for the complex airplane model configura- 
tion as well as for the simple body shapes in the lower Mach number and 
lower lift range. However, results of the high-Mach-number tests for 

~ 
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the simple body and wing model configurations show that the theoretical 
methods for predicting the pressure signatures appear to be only quali- 
tatively correct at the high Mach numbers. In general, it is shown that 
the agreement between theory and experiment decreases with both 
increasing Mach number and increasing lift coefficient, and it is indicated 
that further research is needed in this area. 
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Extrapolation of Wind-Tunnel Sonic Boom Signatures Without 
Use of a Whitham F-Function 

CHARLES L. THOMAS 
NASA Ames Research Center 

Use of the wind tunnel to predict sonic boom characteristics of airplane 
configurations began at Langley Research Center about 10 yr ago. Most 
of the early work in this field was done by Carlson and Morris (refs. 1 to 
8). The first method used tested very small models in fairly large tunnels 
so that far-field signatures could be obtained in the wind tunnel. Then, 
with the use of Whitham’s far-field theory, sonic boom signatures at 
greater distances could be predicted. In 1967, a method was devised by 
Hicks and Mendoza (ref. 9) for extrapolating near-field wind-tunnel 
signatures out to the far field. The near-field signature is used to obtain 
a Whitham F-function, which is then used to obtain signatures at greater 
distances. The near-field extrapolation method eliminated the require- 
ment for very small models. Sharper experimental signatures are pos- 
sible with larger models because of the reduced effect of model vibration. 
Also, with larger models, lift coefficients can be measured directly with 
an internal balance, rather than estimated from model angle of attack. 

, The F-function extrapolation method also has the advantage that signa- 
, tures are measured in the near field where the pressure disturbance 
I is stronger and therefore easier to measure. The main restriction on use ’ of the Whitham theory in extrapolation of sonic boom signatures is that 
’ steady flight in a uniform atmosphere without winds is assumed. A 
uniform-atmosphere extrapolation can be corrected to account for the 
atmospheric temperature, pressure, and wind gradients by the use of 
an atmospheric correction factor (refs. 10 and 11). However, an atmos- 
pheric correction factor only adjusts the amplitude of the wave and does 
not account for the effect that the atmosphere has in determining the 
amount of nonlinear waveform distortion that occurs. A better method 
to account for atmospheric effects is the “age variable” method. This 
approach has been used in a sonic boom computer program developed 
by Hayes, Haefeli, and Kulsrud (ref. 12). The age variable, which is 
calculated from the atmospheric properties, is used to determine the 
amount that an F-function is skewed before applying the area balancing 
technique for locating shocks. The age variable method accounts for 
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the atmospheric effects on both the waveform shape and waveform 
amplitude. 

In this paper a method is presented for extrapolating near-field signa- 
tures out to the far field, without use of an F-function to account for 
nonlinear waveform distortion. Effects of aircraft acceleration and 
atmospheric temperature, pressure, and wind gradients are included in 
the theory. The approach used is to describe the waveform of the sonic 
boom wave by several waveform parameters and then to obtain equa- 
tions for the parameters as functions of time. This approach has the 
advantages that (1) the theory is simpler and more intuitive than the 
Whitham theory. (2) it provides a more convenient method for extrap- 
olating experimental signatures because the signature is dealt with 
directly, rather than through the use of an F-function, and (3) shock 
locations are determined by a much neater method than the classical 
area balancing technique used in F-function extrapolations. 

THE WAVEFORM PARAMETERS 

To describe the waveform of the sonic boom wave at any instant of 
time, we approximate the waveform by an arbitrary number of linear 
segments and define the waveform parameters Api, mi, and hi of each 
segment as follows: Api is the pressure rise across the shock at the 
juncture of segments i and i-1. Often there will be no shock at the 
juncture, in which case Api is zero. mi is the slope of segment i, which 
may be positive or negative. Finally, hi is the length of segment i. A 
completely general waveform can be described using these waveform 
parameters. 

To determine the waveform parameters as functions of time, it is 
assumed that the time rate of change of any waveform parameter can 
be obtained by superposition of the rate of change assuming the wave 
propagates as a linear, nonplane wave and the rate of change assuming 
the wave propagates as a nonlinear, plane wave; that is, for example 

noniblane noni)lane itlane 

The linear wave term accounts for the effects of changing ray tube area 
and changing atmospheric properties. The nonlinear, plane wave term, 
which is also influenced by the atmospheric properties, accounts for the 
nonlinear distortion of the waveform. 

THE LINEAR, NONPLANE WAVE 

The waveform parameter rates of change for a linear, nonplane wave 
propagating through a nonuniform atmosphere with winds are determined 
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from conservation of the Blokhintsev energy invariant (ref. 13, eq. (1 .12) ) ,  
which states 

-- - constant along a ray tube P V A  
pea: 

and also from (ref. 13, eq. (3.9)) 

-- *'- constant along a ray tube 
Cn 

I 

where, in the above two equations: 

p = acoustic pressure 
P o  = ambient density 
ao = ambient sound speed 
cn= ao+ Vo. N 

Vo= wind velocity 
N = wavefront unit normal 
A = ray tube area as cut by the wavefront 

I It can easily be shown from the conservation of the above quantities that 

--+--.2?--2--- 
dt 2 a0 dt p e  dt c,, dt A dt 

& = m i [  3 duo 1 dp 4 dc 

--+-!--'--- 
dt - 2 [a dt p o  dt c,, dt A dt 

dApi APi 3dao 1 dp  2 dc 

dhi - hi de,, - -- - 
dt c,, dt 

where the fractional rates of change of the ambient propertiesczo, P O ,  
and en and of the ray tube area A are understood to be the rates of change 
as seen by an observer moving down the ray tube with the wave. 

THE NONUNEAR, PLANE WAVE 

The waveform parameter rates of change for a nonlinear, plane wave 
are determined from the assumption that the wave propagates as a 
finite-amplitude, isentropic wave. This is a valid assumption because the 
shocks in a sonic boom wave are very weak. The propagation speed of 
each point of the wave is therefore u + a ,  where u is the local fluid 
particle speed (+ means in the direction of propagation) and a is the local 
sound speed. A shock propagates at a speed equal to its average value 
of u + a. It can be shown that 
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where po is the ambient pressure. Using these results, the waveform 
parameter rates of change for a nonlinear, plane wave can be shown 
by the following expressions: 

-- dApi 1 -- kApi(mi+ mi- l )  dt 2 

where 

The effect of the atmosphere enters the above equations in the parameter 
k. As the sonic boom wave propagates down through the atmosphere, po 
increases and, therefore, k decreases. This causes a reduction in the 
rate of nonlinear waveform distortion. As  a result, shocks do not coalesce 
as rapidly and signatures do not lengthen as rapidly as  predicted by 
uniform-atmosphere extrapolations. 

THE NONLINEAR, NONPLANE WAVE 

The expressions obtained in the last two sections are now combined 
to obtain the parameter rates of change for a nonlinear, nonplane wave. 
The following equations describe the waveform deformation of the sonic 
boom wave. 

dm i 
-= km: + c lmi  
dt 

where 
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c.l=-- 1 dc ,  
' c,, dc 

k=-- Y + 1 ao 
2Y Po 

, 
RAY-PATH CALCULATION 

209 

In these equations, the waveform parameters are understood to cor- 
respond to a waveform defined perpendicular to the wavefront. To 
solve these equations, the quantities ~ 1 ,  c2, c3, and k will be assumed 
to be constant over small time increments. The first step in the solution 
of these equations is therefore to determine the values of c1, c2, c:$, and 
k at many points along the ray path. 

If the atmospheric properties, namely the temperature or sound speed, 
the winds in the x-direction, and the winds in the y-direction, are given, 
all as functions of altitude, then the ray path vector R(I) ,  defined in 
figure 1, and the wavefront unit normal vector N(I)  can be determined 
from the following set of equations: 

R ( I + l ) = R ( I ) + A R ( I )  

N ( I +  1 ) = N ( I )  + AN ( I )  

,where At is the time increment between points, which is chosen. The 
1 derivation of this expression for the three components of AN (I) is based 
' upon the assumption that the time rate of change of the wavefront unit 
' normal N is equal to the component of V(- a. - Vo.N) perpendicular to 
N. Using this procedure one can calculate as many points as  necessary 
along the ray path, and at each point, the value of k and the fractional 

I rates of change of the ambient properties ( t o ,  po, and cn can be determined. 
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FIGURE 1.-Definition of the ray path vector. 

RAY TUBE AREA CALCULATION 

The quantities c1 and c:! depend upon the fractional rate of change of 
ray tube area. The ray tube is defined by four rays. Ray 1 emanates from 
the flightpath at time t with azimuth angle 4. The azimuth angle is 
defined to be the angle between the vertical plane through V (the velocity 
of the aircraft relative to the air) and the plane that passes through 
both N(1) and V. Ray 2 is defined by ( t ,  4 + d+),  ray 3 by (t + dt, +), and 
ray 4 by (t + dt, + + d+). The ray tube will have a cross section that is 
very nearly a parallelogram, and therefore the ray tube area is determined 
by any three rays. To determine points along ray 2 and ray 3, points 
along ray 1 being known, the assumption is made that all rays which 
compose an infinitesimal ray tube are essentially the same spatial 
curve; therefore, if one ray is known, any other ray can be obtained by a 
simple translation and rotation of the known ray. Let ray 1 be the known 
ray. For each point on ray 1, there corresponds a point on ray 2 and a 
point on ray 3, as determined by the translation and rotation of ray 1. 
If L, is a vector that joins corresponding points on rays 1 and 3 and L, 
is a vector that joins corresponding points on rays 1 
tube area at  point I, as cut by the wavefront, can 

and 2, then the ray 
be calculated from 
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where 

21 1 

1 D(Z)= R(Z) -R( l )  

I V = aircraft velocity (relative to air) I 
The first two terms of LI(I)  correspond to a horizontal translation of 
ray 1. The other three terms of Ll(Z) are aircraft acceleration terms, 
which correspond to rotations of ray 1. The aircraft acceleration is spec- 
ified by y, $, and M ,  where y is the rate of change of flightpath angle in 
radians per unit of time; $ is the rate of change of heading, or turning 
rate, also in radians per unit of time; and is the rate of change of Mach 
number. The vector L ( Z )  is due solely to rotation of ray 1. The rotation 
is chosen so that if ray 1 lies in a vertical plane, as  it does in an atmos- 
phere without winds, then ray 2 will also lie in a vertical plane. 

It is felt that this relatively simple-minded approach for determining 
the fractional rate of change of ray tube area along a ray path provides a 
good approximation to what is predicted using more elegant methods, 
especially when the ray tube lies nearly beneath the flightpath. Extrap- 
olations of N-waves through a standard atmosphere for flight Mach 
numbers between 1.2 and 3 have been found to agree within about 2 
percent of what is predicted using the atmospheric correction factor of 
Kane and Palmer (ref. 11) indicating that ray tube areas provided by the 
above method are quite satisfactory, at least in the simple case of 
steady flight in an atmosphere without winds. 

It should be pointed out that the method being employed to obtain 
solutions for the waveform parameters is not dependent upon use of 
the above ray tube area calculation method. Other ray tube area calcula- 
tion methods z12y be wed.  
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SOLUTION OF THE WAVEFORM DEFORMATION EQUATIONS 

With the fractional rates of change of the ambient properties and of 
the ray tube area determined by the methods discussed in the last two 
sections, or by any other methods, the values of cl, cz, c3, and k are now 
known at all points along the ray path. Assuming c1, c2, c:j, and k are 
constant between points, the waveform deformation equations can now 
be solved in closed form. The solutions are found to be 

where 
1 T = -  

The above solutions for mi, Api ,  and A i  are used to determine the values 
of the waveform parameters at some point on the ray path, given my, 
Apy, and A;, which are the values of the parameters at the preceding 
point. The waveform at any point of interest along the ray path can now 
be determined, if the waveform near the aircraft is known. 

The above expressions for the waveform parameters are valid only as 
long as all the Xi's remain greater than zero. When one of the Xi's does 
go to zero somewhere between two points on the ray path, which is often 
the case, the above expression for X i  can be used to determine the value 
of At at which it goes to zero. The waveform parameters are then in- 
cremented using this value of At. The waveform segment that goes to 
zero is replaced by a shock, and then the waveform parameters can be 
incremented the rest of the way to the next point on the ray path. 

The above expression for X i  cannot be used when mi= m p l  or when 
mp= m1:,. In the case when my= 

I Af - 
c1 

or, in general, when 

k(mP-m,o-,)T 
1 - kmloT 

I < 0.001 

we can use the approximation 
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A similar expression can be obtained when m,?= my+,. 

Consider now the special case of steady flight in a uniform atmosphere 
without winds. In this case, c:( is zero and C I  and c:! are just equal to 
- 1 dr -- where r is the distance from the flightpath. In this case the 

1 2r dt' 
1 waveform deformation equations can be written with r as the independent 
: variable rather than time and then can easily be integrated to obtain 
1 the following closed-form solutions for the waveform parameters: 

m,? 
mi= ( R  + 1 )  ( 1  - km,?R) 

b y  
Api = ( R  + 1 )  [ ( 1  - kmtoR) ( 1  - km r-IR) ] ' I 2  

APP+ I 1 - km :+ , R - 
ma-ma I 1 + 1  (4 1-kmPR 

where 

( 1  + y ) M 2 r , ,  
y ( M ' -  1 )  '/2p,1 

k= 

In the above equations m;,  App, and A; are the values of the waveform 
parameters at r=rO. Also, the waveform parameters are now assumed 
to correspond to waveforms defined at constant r .  rather than normal to 
the wavefront. The above expressions for the waveform parameters are 
valid only as long as all the hl's  remain greater than zero. When some of 
the hi's do go to zero, which is the usual case, the above expression for 
X i  can be used to determine the value of r at which the first A i  goes to 
zero, and then the initial waveform parameters can be redefined to be 
those at that value of r. Extrapolations of near-field signatures using the 
above uniform atmosphere expressions have been found to agree exactly 
with extrapolations using the Whitham F-function method of reference 9, 
indicating that the two methods are actually equivalent. 

The waveform deformation equations can also be solved in closed 
form for plane waves and spherical waves propagating in a uniform 

medium by letting - - equal zero and - - . respectively. 
1 dA 2 dr 

A dt r dt 
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FIGURE 2 .  -Near-field pressure signature for the ogee wing. 

APPLICATION OF THE THEORY 

An extrapolation program, based upon the theory presented in this 
paper, has been used to investigate the effect of the atmospheric gradi- 
ents on the propagation of the sonic boom wave. The experimental 
near-field signature that has been extrapolated is shown in figure 2. 
This signature was extrapolated through a standard atmosphere without 
winds. The aircraft was assumed to be in steady flight at a constant 
altitude of 60000 ft. The results of this extrapolation are shown in 
figures 3 and 4. Figure 3 shows the effect of the atmospheric gradients 
on the rate of coalescence of the front shock and wing shock. It is seen 
that the effect of the atmosphere is to reduce the rate of coalescence 
over what is predicted by extrapolation in a uniform atmosphere. The 
uniform-atmosphere extrapolation predicts that the two shocks will run 
together at an altitude of about 31 000 ft, whereas the standard-atmos- 
phere extrapolation shows that the two shocks are still slightly apart 
at the ground. This reduction in the nonlinear waveform distortion also 
affects the wavelength of the entire signature, which as a result in- 
creases less rapidly in the standard atmosphere than in a uniform 
atmosphere. The signature wavelength at the ground turns out to be 
about 21 percent longer in the uniform atmosphere. It is seen from the 
results of figure 3 that predictions of the waveform shape at the ground 
using the atmospheric correction factor approach will normally be 
incorrect. However, as it turns out, the amplitude of the waveform at the 
ground. as predicted with an atmospheric correction factor, is usually 
fairly good. 

Figure 4 shows the effect of the atmospheric gradients on the amplitude 
of the wave. Below about 35000 ft in the standard atmosphere, the 
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FIGURE 3.-Effect of atmospheric gradients on shock coalescence for an ogee wing at 
iM= 1.69 and C1.=0.136. 
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amplitude of the wave stops decreasing and actually increases slightly 
before the wave reaches the ground; whereas in the uniform-atmosphere 
extrapolation the wave amplitude continues to decrease, approaching 
the r-3’4 rate of attenuation. At the ground, the wave amplitdde for the 
standard atmosphere is about 4.2 times the wave amplitude for the 
uniform atmosphere, which agrees very well with what is predicted 
using an atmospheric correction factor. 

The program has been applied to cases with atmospheric winds and 
with aircraft accelerations and has been found to give reasonable results 
in all cases. The only restriction on the use of the program is that the 
experimental signatlire that is extrapolated milst he rnnsigtent  with the 
flight conditions specified. For example, if the effect of i, is to be investi- 
gated, then an increase in i. must be accompanied by an increase in the 
aircraft lift coefficient. This means that a different signature will have 
to be extrapolated for each value of 9. Therefore, if general accelerated 
flight of a particular aircraft configuration is to be considered, near-field 
signatures should be obtained in the wind tunnel at several lift coefficients 
and in several azimuthal planes of the model. 

SUMMARY 

A method for extrapolating near-field sonic boom pressure signatures 
through a variable atmosphere with winds has been presented. The 
effects of aircraft acceleration and flightpath angle are accounted for 
in the theory. Deformation of the waveform is described by the use of 
waveform parameters rather than through the use of a Whitham F- 
function. It is felt that this approach provides for a simpler, more intui- 
tive, and more compact theory for the propagation of weak pressure 
waves. 
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A Near- and Far-Field Analysis of 
Nonlifting Rectangular Wings 

SANFORD S. DAVIS 
NASA Ames Research Center 

he Sonic Boom Emi ted by 

The theory discussed in this paper describes a procedure to be used to obtain a 
sonic boom pressure signature that is uniformly valid from the surface of a nonlift- 
ing rectangular wing to infinity. The purpose of this study was to determine if near- 
field effects, which could not be correctly accounted for in the usual equivalent 
body approach, could influence the far-jield sonic boom pressure signature in a 
favorable manner. The method is based on a procedure developed by  Whitham for 
obtaining an approximate solution to the exact potential equation of gas dynamics 
by rejitting the linearized solution to a first-order set of characteristics. The basic 
linearized solution that is used in  this new theory does not correspond to an equiva- 
lent body of revolution (Le., no F-function interpretation) but must be obtained as 
a uniformly valid asymptotic solution to the wave equation. 

Results of the theory have been compared to wind-tunnel tests in the Ames 2- by 
2 f t  wind tunnel on a series of rectangular planform wings. Conclusions based on 
these tests are: ( 1 )  the uniformly valid theory correctly predicts the behavior of the 
sonic boom signature at all distances from the wing; (2) the equivalent body theory 
does not predict the correct signature shape in the region near the wing (“near the 
wing” means distances on the order of the wing span); and (3) at large distances 
below the wing, the equivalent body theory and the uniformly valid theory agree 
with one another. This last result shows that near-field effects cannot affect the 
far-jield signature below the wing in a radical manner and that the equivalent body 
theory can be expected to give a good approximation to the flow at these large 
distances. 

The purpose of this investigation was to determine the effect of the 
near-field region on the sonic boom emitted by thin, nonlifting rectangular 
wings. In this near-field region, the flow is complicated by the appearance 
of contiguous regions of two- and three-dimensional flow patterns. Far 
away from the wing, these complicated flow regions are washed out by 
the smoothing effect of the tip cone interactions. At very large distances, 
the flow can be described adequately by a one-dimensional distribution 
of singularities; i.e., the equivalent body of revolution. The breakdown 
of the equivalent body of revolution in the near-field region can be 
traced to the appearance of a square-root singularity in the F-function 
for the field directly helnw the wing. This behavior indicates that the 
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NEAR FIELD FAR FIELD 
FIWRE 1.  - (hrdinate system and wave geometry for the rectangular wing. 

equivalent body of revolution has a blunt nose, which violates the 
underlying assumptions of small disturbances. To avoid this difficulty, 
a new theory was developed that describes the flow correctly from the 
near to the far field. The basis of this theory is the development of a 
uniformly valid asymptotic representation to the linearized potential 
equation. 

The evolution of the linearized flow field from the near to the far 
field is shown in figure 1 for a rectangular wing of span 1. The rectangular 
wing occupies part of the plane z = 0, and the free stream flows in the 
direction of increasing x. The characteristic Mach surfaces that are 
emitted by the leading edge of the wing separates the flow into the 
disturbed and undisturbed regions. This surface is described by the 
equation 

x - p t = o  O < y < l  

x - p m = o  y < o  

Y > l  x - pV(y -  I)' + 2' = 0 

where p= m. 



interpretation. 
In reality, the Mach surfaces are replaced by shock waves. These 

shock waves are determined by obtaining a uniformly valid first-order 
expression to the flow field by refitting the linearized, uniformly valid 
asymptotic representation to a first-order set of characteristics. 

Figure 2 shows in flowchart form how the uniformly valid first-order 
' pressure rise is obtained from the linearized uniformly valid asymptotic 

representation. The shock waves are then inserted in the region of 
intersecting characteristics by satisfying the Rankine-Hugoniot shock 
relations to first order (ref. 1). 

To explore the characteristics of the sonic boom emitted by rec- 
tangular wings, an experimental test program was conducted in the 
Ames 2- by 2-ft transonic wind tunnel on a series of three nonlifting 
rectangular planform wings (ref. 2). All the wings had a parabolic airfoil 
section with a chord of 5.08 cm (2 in.), a maximum thickness of 0.318 

NONUNIFORM ASYMPTOTIC CORRECTED UNIFORM ASYMPTOTIC 
EXPANSION CHARACTERISTICS EXPANSION 

I 1 1 

S: RAY LENGTH PARAMETER 

p: JiFl 
Y:  c p p ,  

u: PERTURBATION VEL IN 
AXIAL ( X I  DIRECTION 
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- 2 0 2 4  

FIGURE 3.-Shock wave signature measured at z/d= 2.2 for three spanwise stations, 
/ / ( I =  4.0 and II= 1.4. 

cm, and an initial slope m = 0.125. The wing spans were 2.54 cm (1 in.), 
10.16 cm (4 in.), and 15.24 cm (6 in.), respectively. The tunnel was run 
at a Mach number of 1.40, a total pressure of 67.5 kN/m2, and a total 
temperature of 296" K. 

One of the most important effects to be measured in this experiment 
was the interaction of the wingtip Mach cone with the two-dimensional 
flow region. The shock wave signatures illustrating this behavior are 
shown in figures 3 and 4. The pressure signatures are shown as pressure 
perturbations normalized with respect to p(l (the static free-stream pres- 
sure) against an abscissa based on the free-stream characteristics. All 
geometrical dimensions have been normalized with respect to d= 2.54 
cm (1 in.), which represents the distance from the leading edge to the 
point of maximum airfoil thickness. 

Figure 3 shows signatures at z/d=2.2 for three spanwise stations 
for the wing l /d=4.  The strength of the shock wave at span station 
y/d= 0 is about one-half of the value at the plane of symmetry y/d= 2.0. 
This ratio of 2 :  1 is consistent with linear theory if the higher shock 
strength is calculated for a two-dimensional flow and the lower shock 
strength is calculated in the tip cone region. But the magnitudes given 
by linear theory are Ap/po = 0.34 and Ap/pO = 0.17, respectively; values 
that are greatly in error. Note that the strongest shock wave has propa- 
gated farthest ahead of the linearized shock wave position xld -Pz/d= 0. 

In figure 4, similar signatures are shown farther below the wing at 
z/d=8. At this distance, the tip cones have completely overwhelmed the 
shock waves and both signatures are similar in shape and magnitude. 
This figure clearly shows that the smoothing effect of the tip cones has 
caused a redistribution of the pressure that cancels any spanwise 
variations. At a distance of only two spans, all two-dimensional char- 
acteristics of the wing have disappeared and the configuration could 
be treated as  an equivalent body from this station out to infinity. This 
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does not necessarily mean that an equivalent body calculated from the 
wing geometry (Le., supersonic cutting planes) would be adequate, but 
that extrapolation techniques (based on equivalent body concepts) 
from the data shown in figure 4 would give consistent results. 

A comparison of the shock wave signature for this 4-in. wing as 
calculated for both the uniformly valid theory and the equivalent body 
theory based on supersonic cutting planes is shown in figure 5 for the 
region directly below the wing. At z / d = 2 . 2 ,  the signature is completely 
two-dimensional, and it is surprising that the equivalent body theory, 
which assumes three-dimensional flow, comes as close as it does. At 
higher miss distances, the experimental data and the uniform theory 
show adequate agreement, but the equivalent body overpressure signa- 
tures are very bad in predicting the expansion slopes behind the shock. 
Because the overpressures predicted by the equivalent body theory 
and the experiment are of the same order, the impulse is grossly over- 
estimated. This deviation in the predictions is present even at four 
or more spans from the wing, but calculations show that the signatures 
based on the equivalent body theory and the uniform theory do agree 
with one another at infinite distances from the wing. That is, the uni- 
form theory reduces to the equivalent body theory in the very far field. 
This asymptotic behavior is illustrated in figure 6, which shows the shock 
pressure rise decay with distance. The break in the uniform curve 
shows the first influence of the tip cone on the shock strength. (If the 
tip cone did not interfere with the shock wave, the solid curve would 
approach a slope of -1/2, which is characteristic of the decay of two- 
dimensional shock waves.) The uniform curve now undergoes a quick 
change in curvature and approaches a -3/4 slope asymptotically. The 
equivalent body curve lies very close to and just above the uniform 
curve. Beyond 25 to 30 spans, they are effeqtively coincident. 

A similar comparison for the 1-in. wing is shown in figures 7 and 8. 
In figure 7 the signatures are quite close for all of the distance ratios 
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FIGURE 4. -Shock wave signature measured at z/d= 8.0 for two spanwise stations, I/d= 4.0 
and M =  1.4. 
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FIGURE 5. -Overpressure signatures directly below the wing, / id= 4.0 and , V I =  1.4. 

shown. Note that a slight underestimation in the expansion slope is 
also apparent in this case of the low-aspect-ratio wing. The pressure 
decay curve in figure 8 shows much closer agreement between the 
two theories in the mid to the far field. 

CONCLUSIONS 

The results of an experimental investigation into the shock wave 
characteristics of a finite, rectangular wing have generally confirmed 
the predictions of the uniform theory. The existence of rapid variations 
in near-field spanwise strengths arid the subsequent srnootliing effect 
of the tip cone interactions have also been verified by the experiment. 
The equivalent body theory, while giving erroneous results in the near 
field, predicts the characteristics of the far-field sonic boom below the 
wing quite well. In fact, the predictions of the uniformly valid theory 
;educe to the equivalent body theory in the far-field region below the 
wing. 
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FIGURE 6.-Decay of peak pressure rise with distance below the wing, l/if=4.0, 
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FIGURE 7. -Overpressure signatures directly below the wing, / / d =  1.0 and M =  1.4. 
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FIGURE 8.-Decay of peak pressure rise with distance below the wing, / id= 1.0. .\I= 1.4, 
and rn = 0.125. 

An important conclusion that may be reached from this analysis is 
that the far-field sonic boom below a rectangular wing is not affected 
by details of the flow in the near-field region. At large distances from 
the wing, only the simplest axial distribution of sources (as given by 
the equivalent body theory) is necessary in order to give good results. 
However, in  the mid-field region the situation may be quite different. 
The shock pressure decay graphs show that the uniformly valid theory 
approaches the equivalent body theory from below. This result shows 
that the effects of a planar distribution of singularities acts in a favorable 
manner and persists into the mid-field region. It may be possible to 
choose exotic wing thickness distributions (or in the lifting case, exotic 
lift distributions) by which the plane wave contribution significantly 
reduces the mid-field shock strength. These plane wave effects are not 
given correctly by the equivalent body approach, and the uniformly 
valid theory must be used for such a comparative study. 
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Coupled Elastic and Acoustic Response of 
Room Interiors to Sonic Boom* 

S. SLUTSKY AND L. ARNOLD 
New York University 

A study was initiated whose purpose was to determine and predict the time 
history of acoustic response within architectural structures due to sonic boom 
transients and to investigate aspects of signature that strongly injuence undesir- 
able internal acoustic response. 

The procedure was based upon the use of the convolution integral to relate the 
forcing signature-response relationship in terms of the system transfer function. 
This transfer function was determined experimentally using scaled models as well 
as analytically. An inexpensive sonic boom generator was constructed, and input- 
output responses were recorded and converted to digital data. Transfer functions 
were computed and used to calculate responses to modijied forcing signatures. 
Measured and calculated responses agreed very well. It was concluded that this 
technique could be used to investigate a large variety of transient response prob- 
lems as well as the coupled elastic-acoustic systems studied in the present program. 

Results of special releuance to the intetiur respunse uf structures include the 
following: ( 1 )  high frequency transmission of open windows can be correlated with 
the ratio of signature rise time to a retarded time from window edge scattered 
waves, (2) interior acoustic response of buildings with closed windows is insensitive 
to outdoor signature rise time, and (3) high frequency wall acceleration response 
is sensitive to signature rise time. 

This paper is a review of some results that were recently obtained 
for the Federal Aviation Administration concerning the interior response 
of architectural structures. More complete details are reported in 
reference 1. 

The first purpose of this work was to determine and predict the time 
history of acoustic response in the interior of architectural structures 
due to sonic booms. The second purpose was to determine aspects of 
sonic boom signature that influence undesirable internal acoustic re- 
sponse and to examine the effect of changes in free-field waveform on 
interior response. 

*This work was supported by the Federal Aviation Administration of the Department 
of Transportation, Washington, D.C. 
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P(t) 

FILL RE l.-Basic. system for use of the convolutiolr integral 

The procedure included the development of the following principal 
steps: 

A study of techniques for determining the impulsive response of 
a complex system by application of the convolution concept 
Construction of a suitable sonic boom generator 
Experimental and analytical study 
configuration 
Analog and digital data processing 
Analytical approach 

CONVOLUTION 

- 
of a two-dimensional fence 

The basic ideas behind use of the convolution are summarized in 
figure 1 and in the defining equation 

We interpret the transfer function H x , g ( t )  as the impulse response 
of point x of the system of figure 1 due to a unit impulse applied at point 
4 at time t = 0. If, by means of some appropriate experiment, we could 
determine H z , g ( t ) ,  then we could use it to find the response h2)(t) 
at point x due to any different force history Q ) ( t )  applied at point 5: 

J 0 

The kind of system we are interested in is somewhat more compli- 
cated and is represented diagramatically by the structure in figure 2. 
It is clear that a transfer function relating the pressure response within 
the room to a sonic boom signature varies with the detailed geometry of 
the building, the elastic characteristics of the wall, the window geom- 
etry, the position of the microphone, and the direction of the sonic boom 
relative to the structure. It does not, however, depend on the pressure 
versus time history of the boom signature. 
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One of the results of the present work was to demonstrate that trans- 

fer functions for this type of complex structure (and theoretically for 
any linear structure) could be determined from measurements of the 
free-field sonic boom signature and the interior response. T w o  numerical 
procedures were investigated: one is based on the properties of the Fou- 
rier transform, the other is a direct inversion of the convolution relation- 
ship. Thus, if our input-output data are obtained as two sequences of 
points ya and Pg,  we can write equation (1) as a summation: 

y ( a ) = ' T  P ( a - p ) H ( p )  a=o, 1 , 2 , .  . ., N-1 
B=O 

W e  can then use the discrete Fourier transform relation 

. \ - I  .ITi all 
?(n)= y ( a ) e  ' n=O, 1 ,  . . ., N-1 

<r=o 
and 

to obtain the transform relation 

and thence 

FIGURE 2. -Basic system for transfer function within a house. 

420-093 0 - 71 - 16 
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FIGURE 3. - Principle of the sonic boom generator. 

An alternative procedure is based on the direct inversion of equa- 
tion (3): 

H ( a )  = [P41-'r(P) (7) 

wherein we require Po" = P (0) > 0. 
It was found that while both methods worked well, the sensitivity to 

random noise of the direct method was far superior; thus the latter 
method was finally adopted. 

SONIC BOOM GENERATOR 

The principle of the sonic boom generator used in the current tests 
is described diagrammatically in figure 3. Thus Lamb (ref. 2) shows that 
if a spherical balloon of radius Ro with overpressure A p  po is burst 
symmetrically, then at a point p in the field, an N-wave of overpressure 
Ap/2  and duration 2Rlc will be experienced. The presence of a cone 
with apex located at the center of the balloon will not change the spherical 
symmetry of the wave field. Therefore if we burst a diaphragm within 
the cone, we should obtain an N-wave within the cone, and nothing out- 
side (until the wave propagates beyond the end of the cone). Figure 4 
is a photograph of the reinforced wooden cone and aluminum driver 
section at an early stage when the construction could still be seen. It 
was subsequently extended to 20 ft with a 6-ft square opening. The 
flanges at the vertex end permit placement of diaphragms at & = 3 ,  6, 
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or 30 in. The waves generated are N-waves if the diaphragm material 
is brittle and tears suddenly (carbon paper or cellophane) and more 
sinusoidal if the diaphragm tears slowly (polyethylene or other soft 
plastics). 

The models to be investigated are placed on the floor to represent 
Mach 1 flyby, or on an incline for larger Mach numbers. 

TWO-DIMENSIONAL CONFIGURATION 

To verify that the experimental configuration was operating as  an- 
ticipated, the two-dimensional analysis of Lu Ting (ref. 3) was used to 
compute the pressure history at several positions of a fence (fig. 5). The 
calculated and measured results are drawn as solid and dashed lines, 
respectively, in figure 6. The input wave shape was approximated by 
that drawn in figure 6(a). The ordinate is the ratio of the measured pres- 
sure to the peak overpressure of the incident N-wave. Agreement was 
found to be good considering that the data reduction procedures at the 
time of this experiment were still fairly crude. 

Considerably better results were obtained subsequently (as noted 
below) when the data handling was improved in connection with compu- 
tation of the convolution. 

FIGURE 4. - Inner  face and ribs of the sonic boom generator before addition of 4-in. concrete 
shell. 



232 SONIC BOOM RESEARCH 

ANALOG AND DIGITAL DATA PROCESSING 

To carry out the subsequent experimental program as planned, it 
was necessary to obtain the input-output data in digital form, Le., on 
digital tape or punched cards. The procedure used was to record input, 
output, and a trigger signal on three channels of an FM tape recorder 
(bandwidth 0 to 80 kHz). The signals were recorded at 120 in./sec and 
played back into an analog-to-digital converter at reduced speed, ranging 
from 15 to 3 3/4 in./sec. The conversion rate of the ADAGE computer 
used for the purpose was 32000 wordslsec so that resolutions of from 
2.5 to 10 psec were obtained for traces containing about 4000 samples. 
Figiire 7 is an 
from digitally stored data and illustrates that the oscilloscope has in- 
sufficient resolution to display discrete data steps at this kind of point 
density. Figures 7 ( 6 )  and 7 ( c )  are examples of a slowly rising N-wave 
and the interior acoustic response to it, whereas figure 7 ( a )  is the in- 
terior response to a fast rise N-wave such as that of figure l l ( b ) .  The 
radical behavior difference is characteristic and is discussed later. 
The ADAGE computer (operated by the Electrical Engineering Depart- 
ment and adapted to our needs by Professor Thumim of that depart- 
ment) stores its data on magnetic disks. These data were transferred to 
digital tape for processing on the NYU UNIVAC 1108. 

The deconvolution program described in reference 1 was then tested 
on a number of problems. The first was the fence configuration of figure 5. 
In this case the transfer function was generated by processing a fast 
rise N-wave generated by means of the 6-in. radius driver (approxi- 
mately 1 msec duration) and the response at the bottom of the forward 
face of the fence. This transfer function was then convolved with a wave 
generated with the 3-in. radius driver (approximately 1/2 msec). The 
result is drawn as dots in figure 8. The experimentally measured re- 
sponse was also digitized and stored and is noted for comparison as the 
plus marks in figure 8. (Note that only every fourth point was drawn.) 

The second configuration was that of a 12- by 12- by 6-in. box with a 
flexible wall (12 by 6 in.) and a 4- by 2-in. window in the center. An 
approximately 1-msec fast rise N-wave was used to excite the system. 

of seveia! tiaces back oii ari osci::oscope 

1. .2 

4. .3 Microphone Positions 

FIGURE 5. -Two-dimensional fence and microphone reading positions. 
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FIGURE 6. - Comparison of calculated and measured fence pressure responses. (a) Approxi- 
mate input wave shape. ( b )  Microphone in position 2. (c)  Microphone in position 3. (d)  
Microphone in position 4. 

Free-field and interior microphones were used to measure the input 
and response, and the transfer function was computed. Then a slow 
rise wave of about 1 msec was generated, recorded, digitized, and used 
in the convolution to calculate a response, drawn as dots in figure 9. 
The experimentally measured response is also drawn for comparison 
using plus marks. 

Another case was that of a model one-room house built using very 
light bungalow-type construction (studded wall and sheet rock). The 
windows (modeled in steel shimstock, although aluminum would have 
provided a better impedance match) were sealed shut. The transfer 
function for the pressure in the middle of the house interior was deter- 
mined using a fast rise 1-msec N-wave as above and then was convolved 
with a slow rise wave. The calculated response (plus marks) and experi- 
mental response (dots) are plotted in figure 10. 

It is seen from the foregoing figures that the convolution is very 
accurate at short response times (corresponding to the high frequencies 
of specific concern). The measured and computed results appear to 
diverge slowly. Although this type of discrepancy should be studied and 
improved, it is probably not important for audio response purposes. 

A very striking difference in response of the models to fast rise waves 
and to slow rise waves was noted in the experiments. These differences 
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are shown in figure 11 for the case of a 12- by 12- by 6-in. box, with all 
walls rigid and with an open 4- by 2-in. window in the middle of one of 
the 12- by 6-in. walls. The interior microphone was placed in the center 
of the chamber, and the box was oriented so that the sonic boom wave 
struck normal to the wall and window and microphone face. The upper 
trace of figure ll(a) is that of the free-field 1-msec wave recorded up- 
stream of the model. The lower trace shows the interior response. 
Figure l l ( b )  is a larger scale detail of the incident wave, and l l (c)  is a 
similar detail of the response. The upper trace of figure ll(d) is a slow 
rise wave produced by bursting a polyethylene diaphragm, and the lower 
trace is the interior response. It will be noted that figure l l(c) shows 
extremely short initial pulses and subsequent high-frequency responses 
superimposed on a low-frequency oscillation, whereas the lower trace 
of figure ll(d) shows little more than the low-frequency oscillation 
(apparently the Helmholtz cavity mode). 

Responses resembling figure l l ( d )  can also be obtained with a fast 
rise N-wave if the model is rotated so that the incident wave no longer 
strikes the window wall normally, but instead approaches grazing 
incidence. In these cases the effective wave rise time is equal to the time 
to traverse the window opening, about 0.3 msec. 

Experiments carried out with flexible walls and closed windows show 
very little difference in interior pressure response to either fast or slow 
rise waves. However, when the acceleration response of a flexible wall 
(with closed windows) is measured, the response is qiute striking and 
resembles the pressure response through an open window. Thus the 
lower trace of figure 12(a)  represents a fast rise free-field signature, 
and the upper trace is that of the acceleration response (obtained using 
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FIGURE 8. -Results of testing of transfer function on fence configuration of figure 5. 

FIGURE 9. -Results of testing of trrmsfer fnoction DE Sex wi:h wiiidow. 
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an unshielded accelerometer weighing 0.1 g). Figure 1 2 ( b )  shows a 
slow rise incident pressure wave trace and the wall acceleration response 
thereto (the large wavelength curvature is due to unshielded 60-cycle 
stray fields). It must be concluded that noise produced by rattling of 
small objects coupled to the wall would be much more intense for the 
fast rise input than for the slow rise case. 

ANALYTICAL CONSIDERATIONS 

An important consideration of the present study was the high-fre- 
q ~ e ~ c y  hehavior of the interior acoustic field and the effect of open 
windows on that behavior. As a consequence, we were not able to make 
use of the procedures of Craggs (ref.4) and Pretlove (refs. 5 and 6) ,  
which treat the interior volume as well as the walls by means of a finite 
number of degrees of freedom and do not treat the case of an open win- 
dow. A procedure to circumvent these limitations was formulated by 
dividing the flexible wall into rectangular panels and treating the open 
window as a panel of zero mass and zero rigidity. The external pressure 
loads acting on the panels are assumed known (from measurements over 
a rigid body) and concentrated at the center of each panel. These are 
assumed to produce a motion of each of the panels, which is constant 
on each panel. These motions generate a pressure field inside and out- 
side the structure as well as inertial and damping forces in the struc- 
ture that tend to modify or resist the original motions. This interaction 
between wall motion and acoustic fields is expressed by a pair of coupled 

FILLIRE 10. - Results of testing of transfer function on model one-room house. 
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FI(.URE 11.-Response of box with rigid wall and window to fast rise and slow rise waves. 
(a) Fast rise wave and response. ( b )  Detail of incident wave. (c) Detail of pressure response. 
(d) Slow rise wave and response. 

integral equations for the wall deflection and the induced pressure 
difference. These equations are of the form 

The symbol * represents the convolution with respect to time; X and 50 
are shorthand for (x, y, z )  and (xo, yo, a), respectively; dAo is the sur- 
face element for the source distribution; and Gs(X 1x0 I t )  represents the 
structural Green's function that describes the dispiacement at point 
x and time t due to a unit impulse applied-at point X O  at time zero. The 
function P(&,  t )  represents the known external pressure that would 
exist over the structure at points Xo and time t if the structure were rigid. 
The function ~ ( X O ,  t )  is defined as  the pressure difference between 
the outside and the inside induced by the motion w(X0, t )  of the wall. 



238 SONIC BOOM RESEARCH 

FILL RE 12. - Accelerometer response of flexible wall with no window. ( ( 1 )  Fast rise wave. 
(6) Slow rise wave. 

The function Go (X I xo I t )  is the pressure difference induced at point 
X at time t due to a unit impulsive displacement applied at  point Xn 
at time zero. 

The structural Green's function is constructed from a knowledge of 
the normal modes and frequencies of the structure. Powerful programs 
that can be applied to quite complicated three-dimensional structures 
are commercially available for the analysis of structures built up out 
of plates, beams, and rods. 

The resulting Green's function is expressible in the form 

where b,, is a viscous damping, an=-, @y is the nth normal 
mode deflection at the center of the j th panel, and M I ,  is the generalized 
mass corresponding to the nth mode. 

The interior pressure response due to excitation of a wall panel and 
of the open window panel was treated using the method of images rather 
than the method of normal modes. The expressions are very complicated, 
and the reader is referred for details to reference 1. However, when the 
wave field enters normal to the wall and the microphone is located along 
the centerline of the window, if we simplify the window to be circular, 
then the initial pressure field p i n  sensed by the microphone is relatively 
simple: 
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where u o ( t )  is thefree-jield velocity perturbation produced by the sonic 
boom, A0 is the area of the window, and x is the distance from the window 
to the microphone. The consequence of equation (11) is that an incident 
wave is severely distorted in passing through an open window so that 
an N-wave. comes through essentially as two pulses, which then undergo 
internal reflections. This state of affairs can be discussed with the help 
of figure 13. The first sketch shows a fast rise wave hitting a large window, 
so that the rise time tn is much smaller than At= Do/c. We see that the 
first term of equation (11) is a wave having the same form as the free- 
field pressure and a time delay corresponding to the normal distance 
x between the center of the window and the microphone. The second 
term also has the same form but arrives at  a slightly later time, At = Do/c, 
from the edge of the window. The second term does not have any can- 
cellation effect until after the incident wave has reached its peak ampli- 
tude and is decreasing. The second sketch shows a slowly rising wave 
and a small edge delay value, At = Do/c, so that At < tn. In this case 
the second (window edge) term of equation (11) begins to have its can- 
celing effect before the first (window center) term has reached its peak. 
The resulting interior response is much smaller than in the previous 
case. 

Computer calculations with a program based on the foregoing analysis 
were initiated and showed promise. Additional exploratory study is 

At >tR 
R 

At < t  

a 

, FIGURE 13. -Distortion of an incident w a v e .  (u )  Fast rise wave. (6) S l o w  rise wave .  
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indicated, however, and it is hoped that this may be possible at some 
future date. 

CONCLUSIONS 

A procedure was devised based on the use of the convolution integral 
to relate the input-response relationship in terms of the system transfer 
function. This transfer function was determined experimentally, using 
scaled models, as well as analytically. An inexpensive sonic boom gen- 
erator was constructed, and input-output responses were recorded and 
converted to digital data. Transfer functions were computed and used 
to calculate responses to modified forcing signatures. Measured and 
calculated responses agreed very well. It was concluded that this tech- 
nique could be used to investigate a large variety of transient response 
problems as well as the coupled elastic-acoustic systems studied in the 
present program. 

Results of special relevance to the interior response of structures 
include the following: (1) high-frequency transmission of open windows 
can be correlated with the ratio of signature rise time to a retarded time 
from window edge scattered waves, (2) interior acoustic response of 
buildings with closed windows is insensitive to outdoor signature rise 
time, and (3) high-frequency wall acceleration response is sensitive to 
signature rise time. 
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Measurements of Sonic Boom Signatures From 
Flights at Cutoff Mach Number 

DOMENIC J. MAGLIERI, DAVID A. HILTON, VERA HUCKEL, AND 
HERBERT R. HENDERSON 
NASA Langley Research Center 

AND 

NORMAN J. MCLEOD 
N A S A  Flight Research Center 

Sonic boom is synonymous with supersonic flight. A considerable 
amount of experimental and theoretical information has been accumu- 
lated in recent years regarding this subject (for example, refs. 1 to 4); 
so that the sonic boom phenomena are to a large extent understood and 
predictable, although not necessarily avoidable. To illustrate this latter 
point, figure 1 (ref. 5) shows the proposed route structures for a fleet of 
about 500 supersonic transports (SST’s) in the 1990’s. The solid lines 
indicate routes that will be flown at cruise Mach numbers of 2.2 or 2.7. 
These routes are noted to exist over water and sparsely inhabited land 
areas to minimize public reaction to sonic boom. Overflight of land 
areas is represented by the dashed lines. Worldwide public opinion, 
backed by a proposed Federal ruling (ref. 6), dictates that these over- 
land routes be flown so that sonic booms are not produced at ground 
level. These routes could be flown subsonically; however, for most 
effective aircraft utilization, they should be flown at as high a speed as 
possible. It has been suggested that these routes be flown at so-called 
“cutoff Mach numbers,” that is, relatively low Mach numbers at which 
the booms do not reach the ground. This might be accomplished by 
operating the conventional SST at low supersonic speeds, by develop- 
ing a low Mach number SST (ref. 7), or by an advanced sonic transport. 

The purpose of this paper is to present results of a recent fright SU&~ 

aimed at investigating the sonic boom phenomena associated with 
low-Mach-number supersonic flight in which the sonic booms do not 
reach the ground because they are cut off or are at “grazing” angles to 
the ground. 
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BOW SHOCK 

MACH CUTOFF (Mco) I S  WHEN 

NO BOOMS REACH GROUND WHEN 
V g = %  

Vg<ag 

FIGURE 2. -Effect of sound speed gradient on bow wave propagation for two airplane Mach 
numbers. 

EFFECTS O F  THE ATMOSPHERE 

The sonic boom cutoff phenomenon is attributable to the effects of 
the sound speed gradients that exist in the atmosphere. This effect is 
illustrated in figure 2. Shown on the left-hand side of the figure is an 
aircraft in supersonic flight where the speed of the aircraft over the 
ground V, is greater than the speed of sound at the ground a,,. The 
example shown could correspond to a local airplane Mach number of 
about 1.5. For simplicity, only the bow shock is shown. If the sound 
speed were constant at all points between the aircraft and ground, the 
bow shock wave would be straight and would take the position of the 
dashed line. However, sound speed gradients are usually present 
in the atmosphere, the sound speed (temperature) at ground level 
being higher than at altitude. A sound speed gradient affects the shape 
of the wave because the lower extremities propagate faster than the 
upper extremities, thus resulting in a bending forward of the wave as 
shown by the solid line. 

In the right-hand side of figure 2 is shown an aircraft in supersonic 
flight where the speed of the airplane over the ground V,  is less than 
the speed of sound at the ground ay. The example shown could corre- 
spond to a local airplane Mach number of about 1.1. The bow shock, in 
this case, does not extend all the way to the ground. ThP bnw wave has 
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FIGURE 3. -Combinations of airplane Mach number and altitude for complete cutoff for 
steady, level flight in a standard atmosphere with no wind. 

bent forward so that the lower extremity of the wave is traveling at 
the local speed of sound and has become essentially normal to the 
ground. For the case shown, the aircraft is said to be operating below 
“cutoff Mach number” ( M , , )  . 

The range of Mach numbers and altitudes over which Mc,, opera- 
tions can be performed, assuming steady, level flight in a standard 
atmosphere with no wind, is shown in figure 3 (ref. 8). Flights at Mach 
numbers to the left of the hatched curve will result in no booms reaching 
the ground, whereas flights at Mach numbers to the right of the curve 
will result in booms reaching the ground. Figure 3 indicates that the high- 
est speed at which the aircraft could operate in a standard atmosphere 
without producing booms at the ground is about M =  1.15. In the real 
atmosphere, variations in sound speed gradient do exist because of 
temperature and winds. Headwinds at altitude and higher temperatures 
at the surface would increase M c o ;  and conversely, tailwinds at altitude 
and colder temperatures at the surface would decrease M,,. The practical 
range of M,, for a fairly wide range of atmospheres (ref. 9) is shown to 
be from about 1.0 to 1.3. 

Operation of aircraft below M,, has been used in the past by military 
and research pilots to fly at constant altitude supersonically without 
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having booms reach the ground. This was a particularly useful procedure 
with the earlier supersonic aircraft having M =  1.2 to 1.4 capability. In 
addition, these operations were performed for fairly short durations. 
Consideration of sustained flight at M,,  is an entirely new and more 
complex operation. Before such sustained M,,  operations are to be con- 
sidered feasible, information is needed regarding (1) the practicality 
of these operations in terms of the required atmospheric information 
along the entire route, (2) the behavior of the shock waves near their 
extremities, and (3) the nature of the associated sonic boom exposures. 
This paper provides information from flight experiments that applies 
directly to the behavior of the shock wave near its extremity and the 
nature of the associated boom exposure. The information to be pre- 
sented is in the form of a progress report to date on the results of these 
flight experiments. 

EXPERIMENTAL SETUP 

Previous attempts at experimentally defining the sonic boom pressure 
field at the shock wave extremities using ground-based microphones 
have been inadequate (refs. 2, 10, and 11). The present setup, however, 
involved the use of both ground-based microphones and microphones 
positioned at various heights above the ground to an altitude of 456 m 
(1500 ft). The test arrangement is shown schematically in figure 4. The 
aircraft were guided and tracked by ground-based radar, and all meas- 
ured data were correlated with respect to time. 

The tests were conducted at the AEC test site at Jackass Flats, Nev., 
in conjunction with NASA, AEC, NOAA, USAF, and DOT (FAA). Use 

0- 

/ 

FIGURE 4. -Schematic diagram of experimental test arrangement used during M,,, studies. 
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FIGURE 5.-The 456-m (1500-ft) Bren 
tower used for the flight tests. 

was made of the 456-m (1500-ft) high Bren Tower located at the test site. 
A photograph of the tower is shown in figure 5. Microphones were posi- 
tioned every 30.5 m (100 ft) on the tower along with appropriate meteor- 
ological instrumentation. The tower contained an elevator that permitted 
servicing and calibration of the instruments. 

SONIC BOOM EXPOSURES 

Flights Above M,, 

In figure 6 are presented sketches of sonic boom signatures, as meas- 
ured from various tower microphones, for steady, level flight condition 
of the aircraft where the airplane speed over the ground Vu is greater 
than sound speed at the ground ay. This condition corresponds to a 
Mach number of about 1.3. As the incident bow and tail shocks propagate 
away from the aircraft, they extend down and intersect the ground and 
are then reflected upward. The intermediate shock that is shown is 
typical of an F-104 aircraft and originates from the inlet-wing junction 
(refs. 12 and 13). The sonic boom signatures that were observed as this 
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shock pattern moves past the tower microphones are illustrated in the 
figure. 

At the top of the tower, both incident and reflected sonic boom signa- 
tures are observed. These two signatures are displaced in time according 
to the shock wave reflection angle. The incident and reflected signature 
are similar in shape and are about equal in amplitude. At ground level, 
these two signatures are coincident and only a single signature is ob- 
served having about twice the amplitude of the free air pressure signa- 
tures. To an observer at the top of the tower, therefore,four booms would 
be observed, whereas at ground level only two booms would be observed 
and they would be of twice the intensity of the free air booms. 

In discussing shock wave propagation, it is helpful to make use of the 
ray-shock diagrams sketched in figure 7. The top part of figure 7 relates 
to the operating conditions of figure 6 in which V, is greater than ag. The 
aircraft is shown moving in a direction from right to left, and for sim- 
plicity only the bow wave is shown. The shock wave extends to the 
ground and is reflected upward. As the disturbances that form this 
shock wave are emitted from the aircraft, they travel toward the ground 
along ray paths indicated by the solid lines. These rays intersect the 
ground and are reflected upward, as illustrated by the dotted lines. 
Any number of such rays can be drawn from the aircraft at different 
times along the flightpath. It will be noted that two consecutive rays 
are essentially parallel and tend to converge only slightly as they ap- 
proach the ground. 

I 
SIGNATURES -- 

I 

-,TI I,_- 
FIGURE 6. -Measured sonic boom signatures at various heights above the ground for an 

F-104 aircraft in steady, level flight at a Mach number above cutoff (hl=1.3)  and at an 
altitude of 10.26 km (33 700 ft). 
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FIGURE 7. - Ray-shock diagram for aircraft operating at Mach numbers above and below the 
cutoff Mach number. 

Flight Operations Near M,,, 

The bottom sketch shown in figure 7 relates to the conditions when the 
aircraft speed over the ground V ,  is less than the sound speed at the 
ground q,. These conditions would be associated with an aircraft flying 
below the cutoff Mach number. It will be noted that the rays have a 
greater curvature than those for the higher Mach number conditions and 
are totally refracted at an altitude above the ground. The rays, which 
have been drawn for various positions of the aircraft along the flight 
track, become tangent to each other at the cutoff altitude. The areas be- 
tween adjacent rays, as indicated by the shaded region, decrease until 
they theoretically approach zero where the rays become tangent. The 
pressures are expected to markedly increase in regions of decreasing ray 
tube area. Thus, a caustic, or line focus, is formed where the rays be- 
come tangent at the cutoff altitude (for example, refs. 3 and 14 to 17). 

A theoretical description of the bow shock near the cutoff altitude 
(ref. 14) is shown in figure 8. Altitude is plotted as a function of distance 
for an aircraft flight condition of Vu less than u!,. This could correspond to 
an aircraft Mach number of about 1.10. In’the supersonic flow region, the 
bow wave is shown to propagate downward to the point where the sonic 
region is reached, at which point the shock refracts back on itself. Be- 
low the sonic region, subsonic flow exists. It is also noted in figure 8 that 
the depth of the region between supersonic and subsonic flow is sug- 
gested as being on the order of 304.8 to 609.6 m (1000 to 2000 ft), the 
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subsonic region being of the order of 914.4 to 1524 m (3000 to 5000 ft). It 
was expected, on the basis of analytical studies, that the pressure signa- 
tures on the region of the shock extremity would vary considerably in the 
three flow regimes. One of the main objectives of the flight tests was to 
define these pressure signatures by means of systematic measurements. 

Measurements of the pressure field associated with the grazing con- 
dition shown in figure 8 are illustrated in figure 9. The aircraft is shown 
traveling in a direction from right to left on the figure at a ground speed 
slightly less than the sound speed at the ground. The shock waves are 
shown as solid lines, and the dashed lines are the refracted shocks. Also 
shown in the figure are the measured sonic boom signatures that were 
observed as the shock wave system moved across the microphones on 
the tower. In this particular experiment the shock extremity was po- 
sitioned so that pressure disturbances in the supersonic, sonic, and 
acoustic regions were measured. At the top of the tower, a normal 
N-wave sonic boom signature was measured that included the incident 
bow and tail shocks and their refractions. At midtower, which was the 
approximate location of the shock extremity, it is noted that a U-shape 
(caustic) signature is measured for which the amplitudes are larger than 
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FIGURE 9. -Measured sonic boom signatures at various heights above the ground for an 
F-104 aircraft in steady, level flight at cutoff Mach number ( M  = 1.095) and at an altitude 
of 10.26 km (33 700 ft) mean sea level (msl). 

those associated with N-wave signatures observed in the supersonic 
flow region. Near the base of the tower, below the shock extremity, the 
signatures are rounded or sinusoidal in shape and suggest acoustic 
disturbances. 

The bow overpressure from signatures such as those shown in figure 9 
for the flight operations near cutoff Mach number are presented in fig- 
ure 10. The measurements, which represent the average values obtained 
from the ground and tower microphones, are from steady, level flights 
of F-104 aircraft at 9.13 km (30000 ft) above the ground. The solid 
curve represents the overpressure variations suggested by theory 
(refs. 2, 8, and 14 to 17), and the symbols represent the measurements. 
Because M,, varied somewhat (from about M =  1.08 to 1.12) from flight 
to Aight and over the 3-day test period because of variations in atmos- 
pheric conditions, the measured data have been normalized so that the 
overpressures associated with the caustic or U-shape signatures are 
located at an M,, of M =  1.10. 

At Mach numbers below M =  1.10, very low overpressure levels were 
measured, and these were associated with the acoustic type of signa- 
ture shown at the top left of figure 10. At Mach numbers above M =  1.10, 
normal N-wave types of signatures were observed from which the 
pressure increased gradually with increasing Mach number as pre- 
dicted by theory. Near M =  1.10, U-shape waveforms were generally 
observed. The predicted overpressure values approach infinitely be- 
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cause of the presence of the caustic line. The measured caustic signa- 
tures generally indicate overpressure enhancement compared to those 
associated with the higher Mach numbers. The highest enhancement 
factor suggested by the data of figure 10 is 3. 
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SUMMARY REMARKS 

Sonic boom measurements have been obtained from flight experi- 
ments of aircraft operating at cutoff Mach numbers to define the sonic 
boom pressure field at  the shock wave extremity. The experimental 
results provide an indication of the depth and width of the focus region 
and a description of the pressure field near the shock extremity. U- 
shape or caustic signatures resulting in overpressure enhancement were 
observed at the shock wave extremities, and the highest measured 
levels are on the order of three times the nominal N-wave overpressures 
associated with operations at higher supersonic Mach numbers. The 
shock wave was found to be quite sensitive at its extremity to local 
atmospheric conditions (winds, turbulence, etc.). Good qualitative 
agreement with theory was obtained regarding the extent of the sub- 
sonic, sonic, and supersonic flow fields and their associated overpressure 
signature shapes. 
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FILURE 10.-Variation of overpressure with airplane Mach number for an F-104 in steady, 
level flight at 10.26 km (33 700 ft) msl. Data represent average of ground and tower 
nverpressores 
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Airplane Configurations for low Sonic Boom* 

ANTONIO FERRI 
New York University 

Supersonic transport (SST) configurations selected from the point of minimizing 
sonic booms are investigated. It is indicated that for a total length of 3OOft and 
total initial weight of the same order as the present US. SST designs, sonic booms 
having shock pressure rise of the order of 0.5 IbljF cun be obtained. Values as low 
as 0.3 lblft' m e  possible for  airplanes designed for  cross-country flights. 

The introduction of supersonic airplanes for commercial aviation 
has encountered severe criticism and at the present time is opposed by 
many political and technical groups on the basis of several objections 
of different natures. Some of the furor generated against such steps 
is not completely justified because it is generated by superficial and 
incomplete information. However, the basic objection, related to the 
disturbances created by the sonic boom, is based on solid ground and 
presents one of the greatest obstacles in the practical development of 
future supersonic aviation. 

Many of the present difficulties are the result of the fact that the 
problem of the sonic boom has been downgraded at the beginning of the 
planning of the development of the first generation of the SST. There- 
fore, programs for the first generation of these airplanes have been 
initiated without a complete understanding of the effects of the sonic 
boom on the population and their reaction against it. Only when strong 
objections have been raised against the use of such airplanes has the 
responsible technical community considered such problems to be of 
primary importance, and because of the lack of an acceptable solution, 
has been forced to limit the use of such means of transportation to 
overseas flights, at least for the first generation of airplanes. 

The formation of sonic boom by supersonic airplanes is a physical 

*This work was supported by the National Aeronautics and Space Administration under 
NASA grant NGL 33-016119. The project monitor is Ira R. Schwartz. The work presented 
here is part of an investigation on sonic boom problems performed by a team at New York 
University under the direction of the author and Prof. Lu Ting. Participating in some phases 
of this work are Dr. Lu Ting, Dr. Huai-Chu Wang, F. Kung, A. Agnone, and M. Siclari. 
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phenomenon that cannot be eliminated when the airplane has lift and 
can only be reduced or modified; therefore, any technical effort in this 
field should be directed to answering the following basic questions: 

(1) What is the level of minimum practical values that can be ob- 
tained if the airplane design is optimized for minimum boom? 

(2) What is the minimum value acceptable if the airplane flies over 
a populated area? 

If the answers to the first two questions give values that are of the 
same order of magnitude, then a third question should be answered: 

(3) What are the penalties of performance, and what is a possible 
compromise if the airplane is designed for acceptable sonic 
boom? 

This paper reviews an effort devoted to the first task; however, some 
remarks directed to the second and third questions are in order. Pres- 
ent regulations in the United States forbid the production by airplanes 
of sonic booms of any strength over the United States. Such a limitation is 
related only to airplanes; however, sonic booms and noise of some 
level and similar shapes are produced by many other human activities 
and are acceptable everywhere. Therefore, it must be assumed that 
such a regulation is of a preliminary nature. The strongly restrictive 
limitation is presently justified because of the lack of required informa- 
tion raised in question (2). It can be expected that better knowledge 
will permit changing such a restriction. It is interesting to recall indeed 
that similar objections (which were just as loud but not as well organized) 
were leveled against the introduction of the first generation of auto- 
mobiles. They were also classified as too noisy, unnecessary, uneco- 
nomical, and dangerous. Today, the population has become used to 
car noise because of the practical advantages of the use of the 
automobile. 

Although all the information is not available, it is very probable that 
all the objections related to possible damage to structures or buildings 
will be eliminated by better knowledge of the problem coupled with 
the reduction of the sonic boom level required to make the boom value 
acceptable to the people. The objection based on disturbances to humans 
is therefore the most serious objection to deal with at this stage of the 
problem. This objection is related strongly to the value of the  discon- 
tinuous increase of pressure. Therefore, in the present discussion we 
will concentrate on minimizing this value. 

It can be expected that the objection against supersonic flight will be 
overcome by a combination of several steps: limitation of the number of 
sonic booms over a given populated area on the basis of selection of 
appropriate routes, selection of airplane configurations that minimize the 
sonic boom effects on the ground, and adoption of provisions that 
minimize the disturbances due to local conditions. 
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The sonic boom on the ground depends on the details of the airplane 

design and flight conditions as well as on the focusing effects due to 
atmospheric conditions and to terrain configurations. Therefore, all 
aspects of the minimization should be considered. The presence of some 
atmospheric conditions can increase somewhat the intensity of the 
peak overpressures on the ground (refs. 1, 2, and 3). Control of atmos- 
pheric conditions is impossible; however, some knowledge is already 
available that permits the reduction of such effects by carefully selecting 
time of flight and flightpaths. It is probable that for very low values of 
sonic boom, the sporadic increase of sonic boom overpressure due to 
special atmospheric conditions would not make it impossible to fly super- 
sonic planes over land. 

The problem of focusing due to terrain configurations is more serious 
because these conditions will exist all the time for every given flight- 
path. In addition, such effects can produce large increases of sonic 
boom effects. Fortunately, such effects, once detected, can be reduced or 
eliminated by correct selection of flightpaths and by introducing special 
precautions in the vicinity of the focusing. 

LOCAL REDUCTION OF SONIC BOOM BY MANEUVERING OF THE AIRPLANE 

The sonic boom of an airplane, according to the Whitham theory 
(ref. 4), depends on the distribution of the lift and volume along the 
length. Following the approach suggested by Carlson (ref. S), the lift 
and volume can be combined in a single equation. The F-function that 
defines the sonic boom can then be expressed in terms of an integral 
that combines lift and volume. (The function is determined by trans- 
forming the lift into an equivalent cross-sectional area.) The cross-sec- 
tional area due to volume reduces to zero at the end of the airplane; 
therefore, a cross-sectional area of the airplane at zero lift is equal to 
the difference in area due to the streamtubes of the engines plus the 
cross section of the wake. The equivalent area due to the lift reaches 
the value of PI2 CIS at the end of the wing and then remains roughly 
constant downstream. Then for a given distribution of equivalent cross- 
sectional area, which produces a given sonic boom signature, many 
airplane configurations can be obtained because a change in the division 
of equivalent cross-sectional area between volume and lift that does 
not change the total area distribution does not change the sonic boom. 
However. when a given design is selected. the sonic boom on the ground 
depends on the lift of the airplane. The signal generated by the air- 

' p= m, C,. is lift coefficient, S is wing area, and M ,  is flight Mach number. This 
value is increased by nonlinear effects because the overpressure side of the wing produces 
more than one-half of the lift. This effect can be evaluated and is included in the results 
presented here. 



258 SONIC BOOM RESEARCH 

plane and modified by the atmosphere is reflected and amplified by the 

lutely flat and rigid, the coefficient of amplification at high Mach nurn- 
bers is 2. In practical conditions some decay takes place because of 
the nonuniformity and thickness of the ground. Therefore, usually a 
coefficient less than 2 is assumed for the reflection for a rough flat ground. 
In this paper a coefficient of 1.8 is used. However, if the ground has 
some special type of shapes, larger amplifications are also possible 
(refs. 4 and 5). It can be expected, for example, that larger amplifications 
could be obtained locally at the beginning of a chain of mountains or 
at some points at the end of a valley if the airplane flies parallel to the 
valley. 

In addition, it would be useful to reduce substantially the sonic boom 
when airplanes fly in the proximity of cities. This could be done if the 
airplane reduces its lift by means of a maneuver. An airplane flying at 
high velocity could perform a pullup maneuver of a few degrees before 
reaching the point where the sonic boom peak value should be reduced 
and then fly a lower lift trajectory over the selected point. The airplane 
could then fly for several miles producing a signal that is substantially 
reduced. 

Figure 1 gives the range obtainable for different values of CI, at a con- 
stant speed and constant C ,  trajectory as a function of the Mach number. 
The maneuver starts at an altitude of 40 000 ft where the airplane makes 
a pullup maneuver of a degrees and then flies a trajectory at constant CI. 
equal to N times the CI, for cruise, with constant velocity. The airplane 

I ground, depending on the shape of the ground. If the ground is abso- 

1 I 
2.0 3D 4.0 

MACH NUMBER 

FIGURE 1.-Range as a function of flight Mach number for a constant CI,, constant speed 
trajectory. starting at 40000 ft and angle a and terminating at the same altitude. 
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first increases altitude, then descends, and reaches 40 000 ft again at the 
same angle a. The maximum altitude reached is g i v e n  in figure 2 .  Two 
values of initial angle of the trajectory have been considered; one 
corresponding to a= 5" and the second to a= 10". The maximum value 
of discontinuous Ap produced by the sonic boom decreases strongly 
when the flight altitude decreases and C I ,  decreases. The maneuver, 
therefore, can alleviate substantially the disturbances produced by sonic 
boom. For example, initial Ap for a C,, corresponding to two-thirds of 
the horizontal value at an altitude of 40 000 ft can be as low as 0.4 lb/ftp 
as shown in figure 3.  The curve corresponds to an airplane having a 
weight of 460 000 Ib and a length on the order of 300 ft. The takeoff weight 
of the airplane is between 650 000 and 700 000 Ib. 

DESIGN CRITERIA FOR MINIMUM BOOM DURING CRUISE 

Optimum design criteria for supersonic airplanes have been dis- 
cussed in detail by- seve~al  auhors for the case of far-fieici signatures. 
Jones (ref. 6) and Carlson (ref. 5) give expressions for minimum over- 
pressures for the conditions of far-field signature. McLean (ref. 7) 
has shown that for the acceleration phase, near-field signature is pos- 
sible. The author (refs. 8 and 9) has shown that near-field signature with 
sonic booms having values of Ap,,, on the order of 0.8 lb/ft' can be 
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FIGURE 3. -Sonic boom signature corresponding to an airplane 300 ft long flying at M =  2.7 
and 40 OOO-ft altitude at a lift equal to two-thirds of the lift required for horizontal flight. 
Airplane weight is 460000 lb. The equivalent area of the front part is equal to one-ninth 
of the total. 

obtained even for very large airplanes on the order of 500000 lb during 
cruise at 60000 ft and M = 2 . 7 ,  provided that a large amount of equiv- 
alent cross-sectional area is placed near the front. Later Seebass (ref. 10) 
and George (ref. 11) obtained analytical expressions confirming such re- 
sults. For the far-field signature, it is possible to obtain simple expres- 
sions relating the length, weight, and altitude of the airplane to peak 
sonic boom signature. The problem is more complex for the near field 
because the peak overpressure is not necessarily obtained at the be- 
ginning and even the maximum peak overpressure is not indicative of 
the disturbance because both criteria are important: the value of pres- 
sure discontinuities and the maximum overpressure. Both these quanti- 
ties vary with weight of the airplane, length, flight altitude, and airplane 
configurations. 

The analyses of references 10 and 11 indicate that especially for 
low-level flight, the discontinuous variation of pressure can be avoided 
completely when values of the length above what is considered ac- 
ceptable today are considered. In the present work the investigation 
has been directed toward obtaining information on practical lower 
values obtainable when some of the practical constraints are retained. 
The important constraints are the length of the airplane, which, for prac- 
tical operation, can vary only within limits; flight altitude, which is related 
to the possibility of flying at acceptable values of the LID required for 
the range; and area distribution and volume of the fuselage, which is 
related to the possibility of utilization of the airplane. In addition, the 
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variation of the cross-sectional area of the fuselage in the front part 
is related to visibility requirements. 

In the work presented here (which is a continuation of the work pre- 
sented in ref. 8), details of the signature have been related directly to the 
airplane configuration. The results obtained have been derived by using 
two different numerical programs: (1) the program generated by Carlson 
at NASA Langley Research Center (required modifications have been 
introduced in the original program) with the assumption of constant 
atmospheric pressure averaged between the flight altitude and ground 
(p= Vp,tparound), and (2) the additional program generated by W. Hayes 
(ref. 12). The latter program permits analyzing maneuvers, takes into 
account variable density for horizontal flight, and requires somewhat 
longer computing time. Some data have been obtained with both pro- 
grams. The differences between the results of the two methods are small 
and not important for the conclusion reached here and therefore are not 
discussed. 

The parameters investigated here are airplane configuration, weight, 
length, Mach number, and flight altitude. The criteria for the selection of 
the range of the parameters selected are briefly outlined below: Three 
different values of weight have been considered corresponding either to 
horizontal flight or to maneuvers: 4 6 O O O 0 ,  320000, and 240000 lb. The 
first weight assumed is representative of the first part of cruise for an 
airplane takeoff weight of 600 000 lb. A typical airplane weight distribu- 
tion for such an airplane is 

Total weight, 600 000 lb 
Empty weight, 240 000 lb 
Fuel weight, 310 000 lb 

This airplane, with a payload of 50000 lb, should be able to fly 4900 
statute miles. In selecting these data, it has been assumed that because 
the airplane is a second-generation airplane, it will have improved struc- 
tural design and better engines. Therefore, for the same total weight and 
range, it can be more complex than first-generation airplanes. For these 
airplanes, taking the fuel consumption for acceleration into account, the 
weight of the airplane at cruise speeds varies between 490 000 to 330 000 
lb. Then a weight of 460 000 lb is close to the worst condition. Consistent 
with these data, an airplane having an initial gross weight of 400 000 lb 
will have a range of 2800 statute miles, with required reserve. This dis- 
tance is typical of cross-coiiiiiiy Bigliis in the United States. Such an 
airplane at the beginning of cruise will weigh 330000 lb and at the end 
230000 lb. The first two values assumed correspond to the initial and 
final phases of cruise for transatlantic airplanes of 600 000 lb; the second 
and third, to an airplane having smaller ranges usable for cross-country 
flights. 

420-093 0 - 11 - 18 



262 SONIC BOOM RESEARCH 

The length of the airplane is a very important parameter to obtain 
near-field signatures; therefore, lengths on the order of 300 to 400 ft 
have been considered. Few calculations have been performed for 
shorter lengths to emphasize the difficulty of obtaining near-field signa- 
tures for short airplane lengths. In addition, the available height of the 
airplane has also been utilized to increase the effective length of the 
airplane. Present airplanes have vertical tails about 60 ft  from the 
ground. The height can be used advantageously to decrease sonic 
boom in a biplane configuration as will be discussed later. In this case, 
the effective length can be increased roughly by h / M z  with respect to 

number). Therefore an effective length of 300 ft could be obtained with 
an airplane on the order of 200-ft actual length at M=2.7,  while 450 ft 
can be obtained for an airplane 300 ft  long. In a biplane configuration, 
the wing area is distributed in two wings. However, the wing thickness 
required by the structure probably will not increase substantially pro- 
vided that the two wings are connected rigidly near the tip to form a box 
structure. Then, the system can be designed aerodynamically for low 
drag even at transonic speed. 

In the analysis the presence of a vertical tail, the fact that the engine 
exhausts are usually placed near the trailing edge of the wings, and the 
presence of the wake have been taken into account. These factors tend 
to increase the effective length of the airplane and decrease slightly 
the strength of the second shock of the N-wave. In addition, nonlinear 
corrections have been introduced when required in the definition of the 
equivalent cross-sectional area. 

The flight Mach numbers considered are 1.5, 2.7, and 4. An increase 
in cruise Mach number tends to decrease the fuel consumption per mile, 
and therefore for a given weight of the airplane, will permit a better 
compromise for the design from the sonic boom point of view because 
it will permit some degradation of aerodynamic performances. 

Several flight altitudes have been considered between 40 000 and 
80000 ft. The altitude of 60000 ft has been assumed as typical for the 
present SST design by Boeing because it corresponds to high values of 
LID. The flight altitude is a very important parameter for the utilization 
of near-field effects. In addition, a decrease of flight altitude decreases 
proportionally the lateral spread of the disturbance. When far-field sig- 
nature is present, the increase of altitude decreases the sonic boom 
overpressure; therefore, high altitudes have. been considered desirable 
in the past. (For a given weight of airplane, the Apmax decreases roughly 
proportionally to However, when near-field effects are utilized, 
such a conclusion is invalid, and lower altitudes of flight appear to be 
advantageous. A decrease of flight altitude simplifies the engine design 
and reduces engine weight and will permit using a somewhat more 

r l -  Lllc -L..-:""l plly31L,al l,,,*L lb.,gLnn l h  is . the height d the airplane; .Mz, t h e  flight Mach 
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efficient engine, thus canceling some of the penalties due to the de- 
crease of LID. 

The parameter that has been investigated parametrically is the shape 
of equivalent cross-sectional area distribution. To obtain realistic 
equivalent area distribution that could correspond to a possible airplane 
design, the equivalent area distribution has been divided into two 
regions, the front and rear. The important characteristic of the front 
and rear regions is defined mainly by two parameters: the area of the 
equivalent cross-sectional area in the front region indicated by Ll  and 
the length of the front region indicated by 11. The details of the distribu- 
tion of the equivalent cross-sectional area in this region do not affect 
strongly the results provided that such a distribution is close to optimum. 
Therefore, in all of the analyses, the equivalent area distribution has 
been divided into two regions. The total value of the equivalent area 
and the length has been changed parametrically, while the form of the 
distribution has been kept constant. 

RESULTS OF THE ANALYSIS 

The distribution of an equivalent area along the length of the airplane 
is a very important parameter for the shape of the sonic boom. All of 
the results indicate that a minimum concentration of equivalent cross- 
sectional area is required in front to obtain near-field effects. Such a 
minimum depends on the Mach number and flight altitude. However, 
the details of such a distribution are not too important, provided that the 
distribution is not too different from the optimum shape. 

As an indication of these effects, in figure 4 the sonic boom signature 
obtained for an airplane flying at 60000 ft, with M = 2 . 7 ,  and having 
a weight of 460000 lb is shown. The total equivalent area in each case 
is constant and corresponds to a weight of 460000 lb. The total length 
of the airplane is 300 ft. For all cases, this length has been divided into 
two regions, 11 = 70 ft and 12 =230 ft. The equivalent area at the end of 
the h n t  part corresponds to 15.5 percent of the total. This value is 
also kept constant for all cases. The distribution of the equivalent area 
as a function of the length in the front part has been changed in the 
different diagrams as indicated in the figure. The distribution of the 
rear part has been kept constant and assumed in all cases to be linear. 
The figure indicates that for all cases, near-field effects are obtained and 
peak vdlues ~ ? f  th9 crder sf 0.9 can be obtained for values of ihe exponents 
of the expressions between 1/3 and 1/5. 

A change of either the 1, or of the value of the equivalent area of the 

front L1 = kx "dx for a given length of the airplane changes the near- 

field region and the value of the initial Ap. In figure 5, sonic booms cor- 
1' 
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FIGURE 4.-Effect of distribution of equivalent area in the front part. Airplane character- 
istics are L =  300 ft,  weight of 460000 Ib, M =  2.7, h=60000 ft,  L ,  frontal area 15.5 per- 
cent of total, and 1, = 70 ft. 

FIGURE 5.-Sonic booms corresponding to M=2.7 ,  h=60000 ft, weight 460000 Ib, total 
length equal to 300 ft, different equivalent area in the front part, and 11=70 ft. 
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FIGURE 6. - (u )  Possible airplane configuration corresponding to the sonic boom shown in 
figure 5 for /,,=0.155 I,. Actual configuration used for first-generation SST is shown by 
dotted lines. (b )  A possible airplane configuration corresponding to the sonic boom shown 
in figure 5 for I,, = 0.155 L. 

responding to a given value of I ,  equal to 70 ft and different values of L1 
are shown. Too small an amount of equivalent area in front, Le., L1 9 
percent of the total, gives far-field signatures. The extent of the near- 
field signature increases with the increase of L1; however, the initial Ap 
increases with Ll when Ll is larger than 16 percent. Similar results are 
obtained if the value of I, is changed and I,, is kept constant. 

It is interesting to observe that the peak sonic boom is of the order of 
0.9 for the conditions seiected, while configurations used for the first 
generation of supersonic transports have for corresponding conditions 
values of the order of 1.9. The difference is due to the distribution of lift 
along the airplane. In figures 6(a) and 6(b),  two possible configurations 
are shown that correspond to the equivalent area distribution selected for 
the case of n = 1/3,11 = 70 ft, and Ll /L  = 15.5 percent. For comparison, in 
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FIGURE 7. -Effect of airplane length on sonic boom signature at M = 2.7, h = 60 000 ft, and 
weight of 460 000 Ib. 

figure 6(a) a configuration used for the first-generation airplane having a 
peak value of 1.9 is also shown in dotted lines. The configuration of figure 
6(a) has a larger fuselage than the original one; therefore, the changes 
required are obtained by means of volume changes. In figure 6(6), the 
wing planform has been changed and a highly sweptback wing has been 
used, while the fuselage has been kept similar to the fuselage of the first 
generation of airplanes. The second configuration permits similar or 
better aerodynamic performances than the original airplane for cruise 
conditions; however, it probably will require more wing area for low- 
speed flight. 

The other design parameter that is of extreme importance is the total 
length of the airplane. In figure 7, the effect of the tbriil length of the air- 
plane is indicated. In this comparison, the values of 1, and Ll are kept 
constant and equal to 70 ft and 15.5 percent of the total lift, and the total 
length has been changed. In figure 8 a similar comparison is shown; how- 
ever, the values of L1 and 1, are optimized for each total length. An in- 
crease of length permits decreasing the Apma, somewhat and permits the 
use of a slender fuselage. A possible configuration is shown in figure 9. 

The required length of the airplane can be interchanged with the 
height of the airplane (ref. 13). This possible tradeoff suggests that a 
biplane having wings that do not interfere at supersonic speeds and do 
not choke at transonic speeds has some good possibilities from the 
point of view of reducing sonic boom. Examples of such a configuration 
are shown in figures 10(a) and lO(6). The wing area has been distributed 
on two wings, one placed on the fuselage and the other placed on top 
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of the vertical surface. The height of the vertical surface is the same 
as in present SST configurations of the same size. The two wings are 
staggered to avoid choking at transonic speed and are connected by the 
vertical tail and have two vertical reinforcing structures near the tip 
to decrease the bending stresses. The sonic boom of this configuration 
is shown in figures ll(u) and ll(b). Figures l l(u) and l l ( b )  indicate that 
without increasing the length and the height of the configurations con- 
sidered, it is possible to reduce the jump in A p  due to the sonic boom 
for an airplane with a weight of 460000 lb flying at 60000 ft  and with 
M =  2.7 to values of the order of 0.5 to 0.6. An alternate solution is a 
high-wing airplane as shown in figure lO(c). In this case, the perturbation 
of the design configuration is smaller, and smaller aerodynamic changes 
are required. However, the fuselage hangs underneath the wing as in 
the old hydroplanes. Therefore problems related to lateral stability and 
roll stability should be investigated. In figure lO(c), the use of the dihedral 
is introduced to reduce the length of the struts. From an aerodynamic 
point of view, this configuration has attractive characteristics as it pro- 
duces favorable interference. 

Let us consider now the variation of the total weight at the same 
Mach number and flight altitude. In figure 12, the sonic booms of three 
airplanes having the same length and the same distribution of cross- 
sectional area but different weights are shown. A decrease in weight 
decreases substantially the Ap,,,,,. 

In figure 13, the sonic boom for an airplane w i t h  a weight of 320 000 lb 
is shown for several values of L, .  The length of the front part is constant 
and equal to 70 ft,  and the total length is also constant and equal to 300 ft. 
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STA.O.0 STA.55.0 STA. 130.0 STA. 210.0 STA.350.0 

FIGURE 9. -Possible configuration of an airplane 350 ft long with Ap,,, equal to 0.7 lb/ft'. 

Figure 13 indicates that shocks on the order of 0.6 lb/ftz can be obtained 
for an SST useful for a cross-country flight with a weight of 320 000 lb. The 
physical configuration of the airplane changes when the value of the lift 
changes even if the distribution of equivalent area is similar because the 
volume of the airplane must change in proportion. For a weight of 320 000 
lb the pressure jump can be reduced to values as low as 0.4 lb/ftz if a 
biplane configuration is used. 

Figure 14 gives the sonic boom configuration for a biplane flying at 
altitudes of 40 000 and 60 000 ft at M =  2.70. The airplane is 300 ft long. 
A possible configuration is similar in shape to the configurations shown in 
figure 15. The first and last discontinuous jumps have a value of the 
order of 0.28 to 0.40. After the initial jump, a gradual pressure rise takes 
place that is not objectionable from the point of view of disturbances to 
the population. 

The altitude of flight is also a parameter. A change of flight altitude 
between 60000 and 30000 ft does not change strongly the value of the 
minimum intensity of the pressure jump unless the strength of the initial 
shock and the wave is decreased. When the altitude or Mach number of 
flight is changed for a given vehicle weight and total cross-sectional 
area distribution, the relation between cross-sectional area contribution 
due to lift and area due to volume changes because the equivalent cross 
section due to lift is proportional to the ratio between weight and dynamic 
pressure (the coefficient is p/2). Then an increase in Mach number or de- 
crease of altitude for a given total weight increases the dynamic pres- 
sure and decreases the contribution of the lift with respect to the 
contribution of volume, and vice versa. Now if the equivalent area dis- 
tribution selected on the basis of sonic boom optimization requires too 
large a fuselage in the front part of the vehicle, the requirement can be 
satisfied by using highly sweptback wings as shown in figure 6(b).  HOW- 
ever, if the flight Mach number increases at constant altitude or the 
flight altitude decreases for the same Mach numbers, then the maximum 
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FIGURE 10.-(a) Schematic design of a biplane configuration 300 ft long having sonic boom 
signature shown in figure ll(a). (b )  Schematic design of biplane configuration. (c) High- 
wing configuration. 
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FIGURE 1 1 .  - ( a )  Sonic boom signature of the biplane shown in figure 10(a), M = 2.7, 
h = 60 000 ft, weight of 460 000 Ib, and L = 300 ft. ( b )  Sonic boom for biplane configuration 
M = 2.7, weight of 460 000 Ib, and h = 60 000 ft. 

fuselage cross section permitted corresponding to the total area distribu- 
tion selected decreases. As a consequence, solutions are obtained that 
do not have practical applications because the permissible fuselage is 
too small. Because the cross section and volume of the fuselage required 
for an SST are dictated by the mission, the apparent advantage from 
the point of view of reduced sonic boom of low-altitude flight (below 
40000 ft) as indicated by generalized optimization studies cannot be 
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achieved when realistic requirements of volume, area, and length of the 
fuselage are introduced even if the large reduction of airplane perform- 
ance due to the decrease of flight altitude could be accepted. 

The last parameter considered is the Mach number. An increase in 
Mach number increases slightly the peak Ap for the same configuration 
for the same weight and altitude of flight, but the difference is very 
small (fig. 16). If the Mach number and altitude of flight decreases, then 

, the near-field effects become very pronounced, and very low initial 
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FIGURE 14.- Sonic boom signature of a biplane configuration at M = 2.7 and h= 40 000 ant 

h=60000 ft ,  with a length of 300 ft, height of 45 ft, weight of 320000 Ib. 

Ap can be obtained. For these conditions, initial pressure jumps as 10% 
as 0.3 are possible; however, the trailing shock does not decrease in the 
same proportion, and usually it increases, unless the equivalent air 
plane length is substantial. Again the biplane configuration can be usec 
to advantage. A signature obtained for a biplane 290 ft long, flying 
at M =  1.5 and 40 OOO ft is shown in figure 15. The peak pressure is lest 
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FIGURE 15.-Sonic boom signature of the biplane shown in figure 17 flying at M =  1.5 an 

40 OOO-ft altitude, with a weight of 320 000 Ib and length of 290 ft. 
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ure 17. It should be noted that the area of the fuselage in the front part 
r is substantially reduced as mentioned before. 
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1 FIGURE 16.-Sonic boom for two airplanes flying at M = 4  and M = 2 . 7 .  The airplanes have 
I the same weight and equivalent area distribution. 

I 
CONCLUSIONS 

I 
I The results of the analysis presented here indicate that from an 
laerodynamic point of view, it is possible to generate airplane config- 
urations that can reduce substantially the strength of the front and 
Itail shocks of sonic booms for airplanes designed for transatlantic 
operations: values as low as 0.5 lb/ft' are possible. Values as low as 
0.4 and 0.3 lblft' are possible when the weight is reduced for cross- 
/country operations and the airplane is optimized for minimum sonic 
boom. These values are much lower than the values investigated in 
,present flight tests and appear to be in the range of acceptable dis- 
turbance from extrapolation of present information on possible reaction 
!to sonic boom. In addition, disturbances of the same order are presently 
/accepted in normal operations in populated areas. The analysis pre- 
lsented here has analyzed oniy superficially the consequences of utiliza- 
ltion of such concepts on airplane performances. The maximum LID of 
the airplane at cruise should not be strongly affected by the change 
suggested. The structural weight, however, will probably increase with 
respect to simpler conventional solutions. Some increase in weight 
and decrease in LID are acceptable for a shorter range airplane; in addi- 

I 

I 
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FIGURE 17. -Possible biplane configuration corresponding to sonic boom signature shown in 
figure 15. 

tion, small improvements in engine performances could make such 
deterioration acceptable. Therefore, the work required to analyze 
such configurations is justified. Two steps are required to proceed 
further: (1) the acceptance of such levels of disturbances should be 
determined by measuring the shape and level of present disturbances 
currently generated in city operations and by additional flight tests; 
and (2) the incorporation of such concepts in practical, usable con- 
figurations for second-generation SST’s should be investigated. 
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Observations on Probkms Rebated to Experimental Determi- 
nation of Sonic Boom* 

ANTONIO FERRI AND HUAI-CHU WANG 
New York University 

The determination of sonic boom signatures for complex models can 
be performed experimentally. Usually when the sonic boom is determined 
analytically, the strength of the disturbances that determine the signa- 
ture is obtained on the basis of linear approximation. Even for linear 
theory, interference effects are sometimes difficult to analyze. On the 
contrary, an experimental determination of the sonic boom at some dis- 
tance from the model, where disturbances are small, permits extrapola- 
tion of the signature at large distances from the model by means of the 
Whitham theory without the introduction of additional approximations 
above that given by this theory. 

A correct method of extrapolation from one distance to another re- 
quires that the distribution of disturbance be determined either on a 
surface, for example, .a cylinder that surrounds the model at some dis- 
tance from the model, or at a surface that is a stream surface of the flow 
obtained by intersecting the flow field with an infinite plane parallel to 
the undisturbed velocity. The disturbances at these surfaces can be sub- 
stituted for the body. At these surfaces the disturbances are small, thus 
the analysis can be applied correctly. 

While this approach is the only theoretically correct one, it is difficult 
to use because it requires the determination of a complete stream sur- 
face; therefore, in many experiments the assumption that the flow around 
the body can be represented by an equivalent axially symmetric body 
placed at the position of the model is introduced. Then the signature 
needs to be determined only along a line. From this signature, the signa- 
ture at other distances can be obtained. This approach is not completely 
satisfactory when supersonic !cadi ng cdgcs aic prcscnt. I3 addition, 
when large nonlinear effects are present, the signature does not lead to 
an F-function at the axis of the body. Often, other problems of a practical 
nature are present that affect strongly the precision of the results. The 

*This work was supported by the National Aeronautics and Space Administration under 
grant NGL. 33-016-119. 
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purpose of this paper is to outline some of these practical problems. The 
effects discussed herein are 

(1) Support interference 
(2) Uniformity of flow 
(3) Difficulties at high Mach numbers 
(4) Reynolds number effects 

SUPPORT INTERFERENCE 

Usually the model is supported by a sting that connects the model 
to the mechanism that translates the model. The presence of the sting 
and support changes the distribution of the cross-sectional area of the 
vehicle and 'the wake. Figure 1 shows typical variation of cross-sec- 
tional area related to wing thickness, fuselage volume, and lift with 
sting and without sting. Usually the sting area is added without correc- 
tions. This produces large effects when near-field signature is present. 
A possible improvement is to correct the presence of the sting by 
changing the lift distribution locally, as shown in figure 1. Unfortu- 
nately, this correction changes for each lift coefficient. 

In figures 2 and 3, the effect of the sting on the signature is shown 
for two configurations: one giving far-field signature and the second 
giving near-field effects. In the second case, the presence of the stings 
eliminates such effects. 

The effect of the support is also important. In figure 4, several sig- 
natures are presented for vehicles having the same cross-sectional 
area but having different wakes. Signature a represents no inter- 
ference from the support; signatures b and c represent different types 
of supports. The support can change the position and strength of the 
second shock. 

PRESENT CURVE / 
WITH STING 7,/ , 

400k I /  
WING FUSELAGE - b.. I 

FUSELAGE 

WING a - 
0 100 200 300 

FIGURE 1.  -Equivalent area distribution of the configuration with and without sting. 
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WITH STING 
WITHOUT STING 
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I 
-300 -200 -100 roo 

-.5 - 

-1.0- 

-I.+- 

FIGURE 2.- Effect of sting for configuration with far-field signature. 

UNIFORMITT OF FLOW 

Supersonic wind tunnels are designed to obtain uniform flow in the 
test section; however, some nonuniformity exists in all wind tunnels. 
Usually, nonuniformities of the order of ? 0.01 or ? 0.005 in Mach 
numbers are considered acceptable. Such accuracy is difficult to ob- 
tain. These nonuniformities do not affect vehicle performances because 
the vehicle is usually placed in a region where the flow is quasi-uniform 
and where the gradients are small. However, such nonuniformities are 
important for the determination of the sonic boom signature, where 
all of the flow field between the model and the instrument is involved. 

A variation of 0.01 in Mach number corresponds to AP/P=O.Oll 
at M = 2 ,  and 0.015 at M = 4. The corresponding angular deviation de- 
creases with Mach number and goes from 16' to 8' as Mach number 
increases from M = 2  to M = 4 .  The deviations due to nonuniformity 
existing in the wind tunnels increase with Mach number; therefore, at  
high Mach numbers, these effects are of extreme importance. The 
wind-tunnel nonuniformities are carried by two opposite families of 
waves. The waves of the same family as the shock tend to modify the 
position and strength oi  the shock. A typicai example is shown in iig- 
ure 5. Here the calculated and measured signatures are shown in the 
physical position relative to the model. In figure 6, a correction for a 
possible nonuniformity is introduced. The correction required is of 
6' for the shock strength, plus an additional 14' for the  position. Such 
variations are of the same order of the disturbances existing in the tunnel. 
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FIGURE 3.-Effect of the presence of sting. 

600 

FIGURE 4. -Effect of model support. 
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' are reflected at the surface of the body. This changes the pressure 
distribution. In figure 7, a comparison between analytical and experi- 
mental values is shown for two angles of attack. The front of the shock 
is placed at the same position. The difference between calculated and 
measured signature appears to be about the same for both cases, indi- 
cating the possibility of the presence of wind-tunnel nonuniformity. 
The problem becomes extremely serious when the h p / P  produced is 
small and when the measurements are performed at large distances 
from the model. Then extremely uniform flow is required unless cor- 
rections are introduced. In figure 8 some of these effects are summarized. 

%la -0.01 j* 
-0.02 L 

~~~ ~ 
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FIGURE 5.-Sonic boom for h/L= 3.58 and M =  2.7. 
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I 092. 

FIGURE 7. -Example of possible wind-tunnel nonuniformity. 

FIGURE 8.-Pressure variation as function of h/L in wind tunnel. 

Here the APlP as  a function of h/L is shown (h/L is the distance of the 
axis of measurements referred to the length of the model L). Two cases 
are considered that refer to different values of APIP for the full-scale 
airplane. The figure indicates that it will be very difficult to measure 
the sonic boom signature in wind tunnels at large values of h/L. 

REYNOLDS NUMBERS 

The sonic boom signature is very sensitive to the distribution of lift 
along the span of the wing. In sonic boom measurements, the Reynolds 
numbers of the tests are extremely low. Possibility of laminar separation 
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exists for the flow at the trailing and leading edges. Such separation will 
change the lift distribution for a given value of the lift. Therefore, some 
investigation of the flow in the upper surface of the wing is required 
for the analysis of the data. 

THREE-DIMENSIONAL EFFECTS 

It is difficult to obtain information on three-dimensional effects with- 
out performing a complex, detailed analysis. Usually, experimental data 
are extrapolated at large distances by assuming that the vehicle can be 
represented by an equivalent axially symmetric body placed at the same 
location. Some indication that this approach is not valid for supersonic 
leading edges can be obtained from the following considerations. Con- 
sider, for example, a cone cylinder (the cone has a 6" half angle and a 
length 1 = 10). The signature at a distance 51 has been determined ana- 
lytically (fig. 9 (position d)). This signature has been used to determine an 
axially symmetric body (body B) at a distance 21 from the axis of the cone 
cylinder (position b). Such a body is different from the first because of the 
different position as shown in figure 9. Body A and body B produce a 
deflection of the flow inside the area defined by the intersection between 
the shock and a plane at position 31 with respect to the cone (position c). 
If we consider the two stream surfaces produced by deflection due to the 
presence of the two bodies, each of these stream surfaces can be sub- 
stituted by a solid surface that now represents a wing. The surface has 
the same pressure distribution in the lower surface as the pressure dis- 
tribution produced by the corresponding body. The planform of the two 

0 0  20 50 To 90 In I30 IS0 

30 - 

d SIGNATURE so - 

I 

FIGURE 9. -Three-dimensional effects. 
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wings is different, as shown in figure 9; however, each surface produces 
the same sonic boom signature at position d. If we want to extrapolate the 
signature of the two wings at larger distances, for example, 2001, by using 
equivalent axially symmetric bodies, the correct extrapolation is to deter- 
mine first the position and shape of body A and body B, then to determine 
the signature corresponding to these bodies. The signature at a given 
distance different from d is not the same for the two bodies. These signa- 
tures are shown in figure 10. If we assume that the equivalent bodies 
corresponding to the two surfaces are located at c, and we determine the 
equivalent axially symmetric bodies at c from the surfaces, the two sur- 
fares do not correspond to the same equivalent body in spite of the fact 
that they  produce the same signature at d ,  and the signature at a distance 
of 2001 from the axis of the cone is different for the two surfaces and is 
different from the signature of the two axially symmetric bodies. If we 
use the signature at d to determine an equivalent axially symmetric 
body at c ,  and then we determine the signature produced by this body at 
2001 from the axis of the cone, then we obtain a signature for both sur- 
faces that is identical and is different from the two correct signatures. 
The differences are on the order of 20 percent. 

a CONE CYUN#R (PLANEa) - 
b EQUIVALENT BODY (PLANE b )  ---- 
c SURFACE A' (PLANEc)  -'-.- 
d SURFACE B' (PLANE c )  --- 
a EQUIVALENT Bow O B n m  ................. 

FROM SIGNATURE (PLANE c) 

FIGURE lO.-Pressure signatures at 2001 from the axis of the cone. 

CONCLUSIONS 

The use of experimental data permits obtaining sonic boom signatures 
at some distance from the body when the theory applies. However, wind- 
tunnel irregularities and support interference can influence the results 
unless these effects are taken into consideration. Three-dimensional 
effects can be important. 



A New Method for Determining Sonic Boom Strength 
From Near-Field Measurements 

M. LANDAHL, I. RYHMING, H. SORENSEN, AND G. DROUGGE 
Aeronautical Research Institute of Sweden 

In sonic boom research, the wind tunnel has until recently been used 
primarily as a tool to find the sonic boom signature many airplane 
lengths away from the flightpath. This kind of experimental research 
has involved the use of very small models in a large supersonic wind 
tunnel. Recently, however, the idea has been put forward to use the 
wind tunnel instead as a tool to measure the F-function directly (refs. 1 
and 2). One can then use large models; and in order to grasp as much as 
possible of the details of the F-function, the measurements are per- 
formed close to the model. Usually, pressure readings are taken along 
a line directly underneath the model and parallel with the model axis 
(ref. 2). The acquired data are then reduced according to first-order 
theory LO construct the F-function from the data. 

However, an important conclusion in this respect has been reached 
in the analysis of nonlinear effects presented previously (ref. 1); namely, 
that these effects are confined primarily to the near field. Hence, to 
obtain an accurate determination of the F-function from wind-tunnel 
measurements in the near field, one has to correct for second-order 
effects. 

A new method has therefore been developed in which, instead of 
pressure readings, the streamline inclination angles at the edge of the 
near flow field are measured along lines of constant distance from the 
model axis at different azimuthal locations. In other words, a careful 
mapping of the flow field is carried out along a cylindrical surface that 
circumscribes the model. This is necessary to evaluate to second order 
the three-dimensional effects on the F-function. The reason for measur- 
ing the streamline inclination angles is that it has been found possible 
to measure these angles very accurately. 

As will be shown in this paper, this technique when applied to  a simple 
body of revolution produces excellent results. A critical test of the method 
is offered by measuring the axisymmetric flow field produced by this 
body of revolution at  two different radial locations. The F-curves pro- 
duced at  these tws diflerent radial locations must then c~incibe.  As will 

285 



286 SONIC BOOM RESEARCH 

be shown, the evaluation to second order gives two F-curves that are 
very nearly identical. The F-curves determined from the tests accord- 
ing to first-order theory differ, however, significantly from each other and 
also from the first-order theory. 

THEORETICAL BACKGROUND 

According to Landahl, Ryhming, and Lofgren,' the perturbation ve- 
locity components at large distances from a three-dimensional body in 
supersonic flow are given to second order by 

where up, up, and wp are the second-order components referred to a 
cylindrical coordinate system 

where 

and u, v, and w are the corresponding values according to linearized 
theory and their potential is cp. For large distances, the following expan- 
sions were shown to hold: 

Seep .  3. 

~~ 

Seep .  3. 
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Furthermore, equation (5) gives 

We now have the quantities needed to calculate F from equation (7). 
The Mach line parameter y and the angle parameter 80, finally, can then 
be determined from equations (11) and (12). 

For an axisymmetrical flow field, w is zero as are all 8 derivatives. The 
measurements and the evaluation of the F-function are then simplified 
because it is only necessary to consider a single azimuthal plane. Hence, 
to evaluate the measurements for a simple body of revolution presented 
subsequently, we start by calculating the v and cpz distributions according 
to equations (16) and (15) from the measured E distribution along r equal 
to a constant. Subsequently, the cp distribution is obtained from equation 
(lo), where ro is obtained from equation (17). The F-function is now 
calculated from equation (7), and the corresponding y values are then 
obtained from equation (1 1). 

MODEL AND APPARATUS 

The test model, a parabolic spindle with a diameter D=40 mm and 
a length L =  282.84 mm (the theoretical length Lo= 339.40 mm), is con- 
structed of brass and has pressure orifices over the whole length in one 
section. 

The hemispherical differential pressure yaw meter employed for pres- 
sure measurements is shown in figure 1. The pressure probe has a diam- 

I 
4=6 mm d = 3  mm - r -  

\ +- - I t  . I 

I 

B - B  

C- 8 1 
FIGURE 1. -Pressure yaw meter. 

c-c 1 
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eter of 3.5 mm. Four static-pressure orifices are located circumferentially 
90" apart on the hemispherical surface, and four on the cylindrical sur- 
face. A pitot-pressure orifice is located at the probe apex. The static- 
pressure orifice diameters are 0.5 mm and the pitot-pressure orifice 
diameter is 1.0 mm. 

The model was mounted on a sting and could be moved back and forth 
(400 mm), making possible a complete survey of the flow field along a line 
parallel to the flow direction (fig. 2). 

The pressure probe was mounted fixed on the top wall. 
The tunnel total pressure was sensed in the stilling chamber, and the 

reference pressure in the test section with two 74-psia transducers. The 
probe and model pressures were measured with high-sensitivity pressure 
measurement devices. For the model pressure and the four static pres- 
sures on the hemispherical surface, pressure scanners were used. The 
pressure scanner for the model pressure was located in the movable 
sting, and the transducers and scanners for the probe were located out- 
side the wind tunnel (fig. 2). 

i 

I 

I 
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TEST CONDITIONS AND ACCURACY 

The investigation was conducted in the Trisonic Tunnel FFA-TVM 500 
facility at Mach number 3.0. 

The tunnel has a square test section of SOX 50 cm2 with perforated 
walls for the transonic speed range and a flexible wall nozzle, which 
allows the Mach number to be varied continuously between 1 and 4. It is a 
blowdown tunnel, which may be operated with a stagnation pressure up to 
12 atm and a stagnation temperature range of 300" to 400" K. 

Pressure measurements were performed on the model at 0" angle of 
incidence and at three positions along the tunnel axis. In addition, the 
supersonic flow field along a line parallel to the flow direction was meas- 
ured as the model moved 400 mm along the tunnel axis. These flow-field 
measurements were conducted at two radial distances from the model 
axis. The pressures were recorded almost simultaneously because the 
time between the individual measurements was 1 X sec. Schlieren 
photographs were taken of the flow field generated by the  model and the 
pressure probe. 

The absolute level of accuracy of the results is very difficult to estab- 
lish because of the combined effects of the many possible sources of 
error. A number of precautions were taken, however, to reduce the mag- 
nitude and probability of significant errors. The fzcility instrumentaticjn 
consists primarily of high-sensitivity pressure measurement devices for 
determining both stagnation and reference pressures. These pressures 
were calibrated carefully before the investigation. The free-stream prop- 
erties are considered accurate within the following limits: ? 0.01 for M ,  
and & 0.1 percent for pt ,  p. 
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The precision with which local flow quantities for M,=3 .0  can be 

determined is estimated to be k0.07 for M I ,  f 1.0 percent for !)(,I, and 
f 0.10" for E where MI is the local Mach number (Mach number ahead of 
shock wave at probe apex) and p1.1 is the local total pressure. 

RESULTS 

Local flow-field parameters, determined from the probe-measured 
pressures, are presented together with a schlieren photograph in figures 
3 to 6. The pressure distribution on the surface of the model is shown in 
figure 3 for three positions along the tunnel centerline. The downwash 

. O i  

.04 

.07 
0 e 

.02 

.01 

n 
0 . I  .a . 7 .4 - 5  .b .7 .H .9 

X/L, 

FIGURE 3. -Pressure distribution on the model. 

angle E for ( r /Lo)  = 0.375 is shown in figure 4 and for (r/Lo) = 0.228 in 
figure 5. To test reproducibility, several different traverses were made at 
the probe locations of (r /Lo)  = 0.375 and ( r /Lo)  = 0.228. A schlieren 
photograph of the model and the pressure probe is shown in figure 6. 
Table I shows the tunnel pressure and Mach number variation during 
the time for a complete traverse of the flow field. 

Inspection of figures 4 and 5 reveals a w r y  good reproducibility of the 
various runs in the tunnel. The scatter in the measured points observed 
for the lower x-values is due to interference effects caused by the probe 
nose being in immediate contact with the almost conical shock wave 
emanating from the model apex. Similar effects occur as the probe nose 
traverses the rear shock system emanating from the model sting support. 
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FIGURE 4. - Downwash angle as a function of z for r/Lo= 0.375. 
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FIGURE 5. - Downwash angle E as a function of z for r/Lo = 0.228. 
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FIGURE 6. -Schlieren photograph of model and probe. 

TABLE I. - Variation of Total Pressure po, Reference Pressure prer (Tunnel 
Wall Pressure), and Mach Number as a Function of Time 

30.. ............. 
3.5. ........................ 

45.. ............... 

420-083 0 - 71 - 20 
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The distributions of the downwash angle E measured at the two radial 
locations ( r /Lo)  = 0.375 and ( r /Lo)  = 0.228 have been used to calculate 
the F-function for the body using the method outlined earlier. Schlieren 
photographs have been used to determine the shock wave x-location for 
the evaluation of cp according to equation (15). The result is shown in 
figure 7. As can be seen, the two E distributions produce almost identical 

0.025 

0.020 

0.01 j 

0.010 

0.005 

Ir 0 

-0.OOj 

-0.010 

-0.015 

FIGURE 7. -Test results evaluated according to second-order theory. 

F-curves. By comparison, the same E distribution when reduced accord- 
ing to Whitham first-order theory produces two different F-functions. 
(See fig. 8.) There are also substantial differences between the second- 
and first-order predictions. 

Calculations to second order from the body shape of the F-function 
are in progress. It has been found necessary to improve the slender- 
body theory for this case, and a new quasi-cylindrical solution has been 
developed. 
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FIGURE 8. -Test results evaluated according to first-order theory. 

CONCLUSION 

A new method for determining the F-function based on accurate wind- 
tunnel measurements of the flow inclination angles along a cylindrical 
surface that circumscribes the wind-tunnel model has been presented. 
The new method seems to be quite feasible and has so far been used to 
predict the F-function to second order for a simple body of revolution. 

Presently, the complete mapping of a three-dimensional flow field 
produced by an SST-like configuration is being carried out in the wind 
tunne!. 
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A Preliminary Report on Shock Coalescence 

RAYMOND M. HICKS AND CHARLES L. THOMAS 
NASA Ames Research Center 

I 

Aircraft with minimum sonic boom can be designed by two methods. 
The first, or direct, method consists of calculating the pressure signature 
from known configuration geometry (ref. 1). In the second, or indirect, 
method, the aircraft geometry is calculated from a given pressure sig- 
nature (ref. 2). The study described in this paper has been done with 
the latter method in mind. The effect of six different pressure signature 
parameters on the rate of coalescence of the nose and wing shocks has 
been studied for a typical near-field, wing-body signature. No attempt 
has been made to calculate configurations from the pressure signatures 
developed during the investigation. However, the results of the analysis 
will permit the airplane designer to specify a near-field pressure signa- 
ture with a better understanding of the subsequent development of the 
mid-field and far-field signatures as the waveform propagates through 
the atmosphere. 

DISCUSSION 

From extrapolation of experimental, near-field, wing-body pressure 
signatures it has been observed that, for certain configurations, the dis- 
tance between the nose and wing shocks first increases and then de- 
creases as the wave system propagates through a uniform atmosphere. 
(See fig. 1.) This appeared to be a shock propagation phenomenon that 
could produce a “sawtooth” pressure signature with an attendant de- 
crease in sonic boom in the mid field. Hence, a systematic study was 
undertaken to determine which pressure signature parameters were 
most effective in producing this effect. The type of signature studied is 
shown in figure 2. The parameters studied were Mach number, nose and 
wing shock strengths, slopes behind nose and wing shocks, and initial 
distance from nose shock to wing shock. Only the positive part of the 
waveform was considered. However, the technique used in the analysis 
could be applied to the negative part without modification. 

The distance A from the nose shock to the wing shock for a uniform 
atmosphere is given by 
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D-TUNNEL SIGNATURE 

I /  \ \  

SHOCKS 
COALESCE 

1 

GROUND PLANE 

FIGURE 1.-Coalescence characteristics of nose and wing shocks in a uniform atmosphere. 

FIGURE 2. -Signature studied. Parameters studied are Mach number, nose and wing shock 
strengths, slopes behind nose and wing shocks, and initial distance from nose shock to 
wing shock. 
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A =  [ l -20kml  ( V O m ) ]  [ AI)-- 2' ( d L L L z ) - 1 )  

ApZ (d--l)] 
rnl - m2 1 -20kml ( d m )  

1 where 

and 
Ao=initial distance from the nose shock to the wing shock 
ml =slope behind the nose shock 
m2 =slope behind the wing shock 

Apl =nose shock strength 
Ap2 = wing shock strength 

r =  distance from the axis of the aircraft 
y=ratio of specific heats 

p o  = ambient pressure 
p=Mach angle 

The derivation of this equation will not be given here because it can 
be obtained from the equation for A(r) in the paper by C. L. Thomas,' in 
this document, by setting ro= 10. The use of a uniform atxosphere in 
this study does not restrict the results in any way because coalescence 
rates are lower in a standard atmosphere. The study could have been 
carried out by the method of reference 3 but would have required con- 
siderably more time and effort. 

Each subsequent figure will show the effect of one of the six parameters 
studied on the rate of coalescence of the nose and wing shocks with the 
remaining five held constant. All figures will show graphs of the nor- 
malized distance from the nose shock to the wing shock versus distance 
from the aircraft; i.e., A/Ao versus r. 

The effect of Mach number on the rate of coalescence of the nose 
and wing shocks is shown in figure 3 for the initial signature shown at 
the top of the figure. Note that the lowest rate of coalescence is found 
at  a Mach number of 1.4 with the rate increasing rapidly with increasing 
Mach number. The Mach number for minimum rate of coalescence can 
be shown mathematically to be d2. If a different initial signature had 
been used, the trend with Mach number would have been similar but 
the curves would be shifted according to values of the five parameters 
( A p , ,  Ap2. ml,  m2, and AI)) used. 

I Seep.205. 

I 
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FIGURE 3. -Effect of Mach number on coalescence. 
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FIGURE 4. -Effect of nose shock strength on coalescence, M = 3. 
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FIGURE 5. -Effect of wing shock strength on coalescence, M= 3. 

The effect of nose shock strength on the rate of coalescence of the 
nose and wing shocks is shown in figure 4 for M=3.0. Note that the 
nose and wing shocks remain separated to greater distances from the 
aircraft as the nose shock strength is decreased, with the remaining five 
parameters held constant. This reduced rate of coalescence is a result 
of a reduced pressure ahead of the wing shock for the smaller values of 
nose shock strength. One might surmise that lower coalescence rates 
can be achieved by decreasing the pressure ahead of the wing shock 
because this produces a lower average pressure for the wing shock and, 
therefore, a lower propagation speed. It should be pointed out that the 
equation for X given earlier has been derived with the assumption that 
the propagation speed of any shock wave is the average of the propaga- 
tion speeds immediately ahead and immediately behind the shock. 

The effect of wing shock strength on the coalescence characteristics 
of the nose and wing shocks is shown in figure 5. As might be expected, 
lower coalescence rates are found for smaller values of wing shock 
strength. Note that for the initial signature shown second from the top 
of the figure, the nose and wing shocks diverge briefly before coalescing, 
while only divergence of the shocks is shown for the top signature. 
However, coalescence of the shocks for the top signature will begin at 
r greater than 2000. 

The effect of slope (rate of expansion) behind the nose shock is shown 
in figure 6. Note the rapid decrease in rate of coalescence as the slope 
becomes more negative. The mechanism by which this parameter 
reduces the rate of coalescence is similar to that of figure 4; i.e., the 

~- ~ - 
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FIGURE 6. -Effect of slope behind nose shock on coalescence, !M= 3. 
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FIGURE 7. -Effect of slope behind wing shock on coalescence, M = 3. I 
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The effect of slope (rate of expansion) behind the wing shock is shown 
in figure 7. Note that as the slope becomes more negative, the rate of 

c 

I I I I I 

0 400 800 I200 1600 2000 
DISTANCE FROM AIRCRAFT, r , FIGURE 8. -Effect of initial distance from nose shock to wing shock on coalescence,M= 3. 
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an application of this effect to an experimental signature is shown in 
figure 9. The solid symbols represent an experimental signature meas- 

-2 L 
FIGURE 9. -Effect of pressure reduction ahead of wing shock, M =  2.7. 



CONCLUDING REMARKS 

A parametric study has been conducted to determine the effect of 
six pressure signature parameters on the rate of coalescence of the nose 
and wing shocks of a wing-body type of pressure signature. This has 
been a cursory investigation because many combinations of the six 
parameters were not considered. However, definite trends of shock 
coalescence with each parameter have been shown and it i s  clear that 
many combinations of the six parameters could be used to reduce sonic 
boom by retaining a near-field signature to large distances from the 
aircraft. One example has been given to show that a reduction in sonic 
boom can be realized by decreasing the pressure ahead of the wing shock. 

,While no attempt has been made to develop configurations that produce 
the signatures discussed, a relation between certain signature parameters 
and aircraft geometry has been indicated. 

Future effort will be devoted to investigation of the effect of the six 
pressure signature parameters on shock coalescence in the real atmos- 
phere and to development of aircraft configurations that will generate 
shock systems with low rates of coalescence. 
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I 
, Application of Multivariable Search Techniques to the Design 

of Low Sonic Boom Overpressure Body Shapes" 

D. S. HAGUE AND R. T. JONES 
Aerophysics Research Corp. 

Body shapes that minimize sonic boom overpressures in the near and 
far fields (refs. 1 and 2) have previously been obtained through applica- 
tion of the variational calculus. There are indications (ref. 3) that certain 
supersonic transport (SST) designs may fly at altitudes that lie in the 
mid-field region, where the pressure waves emitted from a vehicle have 
yet to coalesce into far-field N-wave form. This paper investigates body 
shapes or equivalent body shapes that provide low boom in the mid field. 

Solutions are sought through the application of multivariable search 
techniques (refs. 4 and 5). This approach involves the construction of a 
finite, many parametric system model. Such models may vary in geo- 
metric and dimensional complexity. As the numher of parameters in- 
creases, the approach tends to the variational calculus solution; however, 
for many design problems, it suffices to represent continuous systems by 
a relatively small number of parameters (ref. 6). In such cases, multi- 
variable search represents an attractive alternative to the variational 
calculus formation. Of more significance in vehicle design is the ability 
of the multivariable search procedure to readily combine many system 
disciplines into a unified quantitative system optimization problem. Thus, 
the optimization program employed in this study (refs. 5 and 7) has been 
successfully applied to a variety of subsystem optimization problems in 
the areas of aerodynamics (ref. 6), communication systems (ref. 8), 
propulsion design (ref. 9), and trajectory shaping and combined aero- 
dynamic-structural-propulsion mission shaping (refs. 10 and 11). Thus, 
it is conceivable that a complete SST synthesis involving technical- 
economic-environmental constraints could yield to the multivariable 
search procedures used here. 

It should be noted that the variational calculus may also be used to 
obtain solutions to problems in which continuous control and finite 

*Study undertaken under sponsorship of NASA Ames Research Center as part of 
cor??rec? N . 4  2-4880. 
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parameters are intermixed. On problems of reasonable complexity, the 
variational calculus must be reduced to a numeric form. Generalized 
computer programs for the solution of such problems are available (refs. 
12 and 13); however, computation time requirements tend to rise rapidly 
with problem complexity. 

MUtTtVARlABLE SEARCH 

Multivariable search based on the gradual evolution of an optimal 
solution by iterative procedures has seen increasing uses throughout 
the sixties. This can be traced directly to increases in computational 
capacity during this period. To apply the method, a performance func- 
tion +=+(ai), which is to be minimized or maximized, is defined. Here, 
the vector (Y has a finite number of components ai, whose values are to 
be determined to satisfy the optimization criteria. Simultaneously, with 
the minimization of 4, a vector +=+(a) may be constrained to the null 
vector having components $ j = O .  Inequality constraints $k 0 or $k 3 0 
may readily be incorporated into the constraint vector (ref. 5). In general, 
the constrained optimization problem may be replaced by an uncon- 
strained problem by the device of a penalty function; e.g., by minimiza- 
tion of an augmented performance function 4* =++ Wi$i *. It can be 

shown that if the constraint weights Wj are sufficiently large, minimiza- 
tion of C#I* is equivalent to minimization of 4, subject to the constraints += 0. When the constraint weighting factors approach infinity, such 
an approach defines an interior penalty function, and only designs that 
satisfy the constraints are retained in the search process. This approach 
is typified by the Fiacco-McCormick procedure (ref. 14). For problems 
involving straightforward constraints, an interior penalty function is 
satisfactory; for complex, nonconvex constraints, interior penalty func- 
tion methods are inappropriate (ref. 15) and finite constraint weights 
should be employed. This leads to an exterior penalty function approach 
in which designs that do not satisfy all constraints may be temporarily 
retained in the optimization process. 

A variety of iterative search strategies for solution of multivariable 
optimization problems has been proposed (ref. 4). The more popular 
methods include steepest descent and Fletcher-Powell methods (ref. 16). 
However, in general, any one strategy may encounter convergence 
difficulty, and the search strategy appropriate to one optimization prob- 
lem may be quite inappropriate for another problem. It follows that 
search reliability may be enhanced by the adoption of a variety of search 
strategies for problem solution. This is the approach used in the present 
study, which employed the program of references 5 and 7 containing 
nine multivariable search algorithms that may be applied in an arbitrary 
sequential order. These nine searches include elementary single-pa- 

i 
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rameter search strategies, organized multivariable search strategies, and 
random techniques as follows: 

Sectioning search exhaustively searches the range of each parameter 
in turn for the one-dimensional optimum. The values of the parameters 
are fixed at their optimum as they are achieved. The procedure is 
repeated until no further gain is possible. The parameter order can be 
chosen by the user or selected at random. This search can be used for 
evaluating nonoptimum sensitivities about any point in the parameter 
space because each search essentially describes a one-dimensional cut 
through the multidimensional design parameter space. 

Creeping search is similar to sectioning in that the parameters are 
perturbed in turn one at a time. In the creeping algorithm, however, the 
parameters initially undergo only small incremental changes in the favor- 
able performance direction. On repetitive cycles the step size is increased 
independently in each parameter until further gain is impossible in 
either increasing or decreasing directions. An order-of-magnitude reduc- 
tion in step size is then effected, and the process is repeated. At any 
given moment some parameter step sizes may be increasing, while others 
are decreasing. Ultimately, all step sizes are reduced to prespecified 
minimum values, and the search is discontinued. 

Random point search is essentially a Monte Carlo technique that 
distributes points uniformly in the control parameter space. After a 
prespecified number of evaluations of the objective function, the control 
vector providing the best pcrforrnance characteristics is retained. 

Magngy search scales all the control parameters uniformly in the 
favorable direction until the local optimum is achieved. 

Steepest descent search relies on partial derivatives of the objective 
function with respect to the control parameters to predict a favorable 
direction. In effect, a tangent plane is fitted to the objective function 
surface at the starting point. Numerical derivatives are computed by 
two-sided perturbation of each design parameter and are thus correct 
to second order. In its simplest form, the search proceeds in the gradient 
direction. Experience has shown that gradient direction search is often 
very inefficient. Ridge lines are rapidly located; from that point gradient 
search becomes a sequence of oscillatory perturbations along the ridge. 
Algorithm extensions have been incorporated that allow the search to 
proceed in a weighted gradient direction. The weighting matrix employed 
as a perturbation measure is adaptively determined within the program 
by nondimensionalization of the search hyperrectangle; local partial 
circularization of the payoff function contours, and, most important, by 
an adaptive learning mechanism based on previous search behavior. 

Quadratic search fits a second-order surface to the payoff function at 
a nominal design point. The extrema1 of the approximating quadratic 
surface is predicted, and the search proceeds along the ray defined by 

420-093 0 - 71 - 21 
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(a)  the initial point and (b) the predicted extremal point. This technique, 
although developed as a search procedure, is also useful for predicting 
optimal second-order sensitivities about the optimal design point. 

Fletcher-Powell or Davidon search, or deflected gradient method, 
essentially combines features of steepest descent and quadratic searches. 
The procedure initially searches in the gradient direction. Recursive 
relationships permit development of approximate second-order informa- 
tion from successive ray searches. This information is used to develop a 
weighting matrix that provides quadratic convergence. The method can 
become ill-conditioned if the payoff response surface does not exhibit 
aimosi yualiiaiii: foi-iii iii the search region. 

Pattern search can be applied after successive applications of any 
combination of other searches. It uses the starting point from the first 
search and the final point from the last search to define a new search 
ray. This ray is searched in the favorable direction for the local optimum. 
It is essentially an acceleration technique exploring gross directions 
revealed by other organized search algorithms. 

Random ray search proceeds on the basis of small randomly selected 
design parameter perturbations. Perturbation magnitude is adaptively 
determined on the basis of past performance characteristic behavior. 
This can be very efficient when used in conjunction with pattern search 
when there are many interacting design parameters. 

In addition to these nine searches, which assume unimodality of the 
performance response surface, the program contains a method of lo- 
cating more than one extremal. This multiple-extrema1 technique consists 
of design parameter space warping. A transformation is applied to the 
parameter space such that all the extremals of the performance response 
function are retained in the transformed space, but the relative locations 
are altered in an inverse exponential manner about an arbitrary point 
in the original space. In practice, the transformation is performed about 
some previously discovered extremal point. Subsequent searches in 
the transformed space then have a reduced probability of finding the 
same extremal. This probability depends on the exponential order of 
the transformation selected by the user. 

OVERPRESSURE CALCULATION 
~ 

i 
~ 

Overpressure calculations are performed by the method of Lighthill 
(ref. 17). For smooth, pointed bodies having a longitudinal area distribu- 
tion S ( t )  and lift distribution Z ( t ) ,  the equivalent area distribution 

f ( t )  =G S ’ ( t )  +- ’ [  p l ( t )  29 I 
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is utilized. and the F-function is obtained from 

For bodies having slope discontinuities in the equivalent area distribu- 
tion, an additional term AFi is added to F (y) at each point of discontinuity 
t i .  The F-function becomes 

Here R k  is the equivalent radius at the kth discontinuity, and h ( z )  is 
defined in reference 17 as a function of 

Typical pressure signatures emitted by a parabolic body of revolution 
as computed by the Lighthill method at three values of h/l  are presented 
in figure 1. The gradual approach to a far-field N-signature is apparent 
from this figure. It should be noted that 1 is equal to twice the nose length 
throughout this paper. Shock positions are located by the Whitham 
method based on the definition of the hull or upper boundary of the 
F-function integral 

Z ( y ) = f y F ( t )  --P dz 

This integration is performed numerically without smoothing, and a 
local parabolic representation of each subarc corresponding to the 
signature compression and expansion waves is employed to determine 
subarc intersections (fig. 2). 

SINGLE-PARAMETER SOLUTIONS 

A typical single-parameter family of body shapes can be defined by a 
radius distribution of the form 

Here N is a free parameter and A is a constant determined by problem 
constraints. If base radius R g  and nose length L are constrained, 



312 SONIC BOOM RESEARCH 

FIGURE 1. -Pressure waves from power body at three distances. 

Arc IO 

FIGURE 2. -Schematic of shock formations. 
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If the nose volume V is constrained, 

Typical body shapes defined in this manner for the base radius and nose 
length constrained case are presented in figure 3. It may be noted that 
a local inequality constraint 

is imposed on the body profile. This straightforward one-parameter 
family of bodies produces a fairly wide range of pressure signature types 
as illustrated by figure 4 for the case L = 4.0, Re = 0.25, M = 1.414, and 
( h / l )  = 10. For very low exponents, an N-wave with a zero-pressure point 
immediately aft of the nose results. For higher exponents, a semi-flat top 
signature with declining pressure results, until at an exponent of 0.79, 
a true flat top signature is attained. Increasing the exponent results again 
in a semi-flat top signature of increasing pressure until, for a sufficiently 
high exponent, a finite rise signature is obtained. Finally, for a sufficiently 
large expnnent, an N-wave with a zero-pressure point at the shoulder 
(x= 4.0) is obtained. 

If the maximum overpressure at any point on the signature is plotted, 
figure 5 is obtained. This is the quantity minimized in the  present study. 
A single-parameter search for the minimum of a function having a slope 
discontinuity at the extrema1 point is best carried out by a “golden 
section” search (refs. 4 and 5). This is almost as efficient as the 
Fibonacci search but avoids the Fibonacci requirement of pre- 
specification of the number of point evaluations to be made in the 
section search prior to search commencement. The actual points 
employed in a typical search are illustrated in figure 5. The minimum- 
maximum overpressure obtained by a series of such one-dimensional 
searches are presented in figure 6 for a range of h/l  value between 10 and 
700 with bodies of nose length L=4.0 and base radius R g ~ 0 . 2 5 .  It can 
be seen that in the near field, a $-power body provides the optimal solu- 
tion and in the far field NOptlmUm++. In general, within the mid tield, 
a transition from a $power to a $power body occurs gradually with 
optimal exponent varying with Mach number, slenderness, and h/L 
values. A family of volume-constrained solutions obtained in a similar 
manner at M=2.7 is presented in figure 7. All bodies have a nose volume 
equal to that of a cone having a nose length of 4.0 and a base radius 
of 0.25. 
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FIGURE 3. -Single-arc power bodies, with a fixed length and base radius. 
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FIGURE 4. -Selected signatures for single-arc power bodies with base and length con. 
strained, M =  1.414 and h / l =  10. 
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FIGURE 5. -Variation of maximum overpressure with power body exponent with radius and 
length constrained. 

MULTIPLE-PARAMETER SOLUTIONS 

A four-parameter family of bodies that consists of two successive 
power arcs is illustrated in figure 8(u). Free parameters ai are 

a1 = R1, radius at power-arc intersection 
a2 =XI, location of power-arc intersection 
a3 = First arc exponent 
a4 = Second arc exponent 

Optimization of this family of body shapes results in a typical signature 
of the form presented in figure 8(b). The signature is compared to that 
of a $-power body of the same base radius. The maximum overpressure 
is unchanged from that of the $-power body, although the signature is 
somewhat different in form. Clearly, the %-power body itself lies within 
this four-parameter family of shapes. Hence, it appears that the minimum 
overpressure shape is not unique. The body shape corresponding to this 
signature is given in figure 8(u) and is somewhat more bulbous than the 
$-power body. 

Proceeding one step farther, a three-arc body can be defined by the 
use of seven parameters. Figure 9 illustrates the body geometry. With 
length and base radius constrained, seven convenient free parameters 
are 

f f 1  =x1 

a2= K, where X2 =XI + K(X3 -XI) 
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f f s = R ,  
( ~ q =  Rz 
f f g  = N1 
( ~ g = N z  
f f 7 =  N3 

Figure 10 presents an optimal solution obtained at M=1.68 h/l=50 
employing this problem formulation. A distinct three-arc shape has been 
evolved. The solution was obtained by a combination of random ray, 
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FIGURE 6.-Effect of distance on single power arc solutions with length and base con- 
strained, M = 2.2. 
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adaptive creeping, and pattern searches preceded by a random point 1 

(Monte Carlo) search. This optimal shape has a maximum overpressure , 
ratio of 7.99 x 10-4. For comparison, a $-power body of the same total 1 
nose length and base area would have a maximum overpressure ratio of 
1.25 X The computed three-arc minimum-maximum overpressure i 
is, therefore, 64 percent of the corresponding $-power body overpressure, 1 
the optimal single-arc solution for the conditions employed. This is a , 
significant reduction in overpressure. 

Computed pressure signature, including shock locations, is presented 
in figure 11; it is a modified flat top signature. The overpressure reduction 
mechanism is clear. A smooth forebody generates an initial flat top 
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signature. The forebody has a smaller terminal radius than that of the 
body base; hence, the flat top overpressure is less than that of a single-arc 
flat top signature. Aft of the forebody, the second arc necks inward, 
creating an expansion field that interacts with the compression field 
originating from the third arc as it achieves the base radius constraint. 
The resulting wave cancellations provide a signature that nowhere 

Optimum Two-Arc Body 

0.1 -I 

(0) I 2 4 6 8 10 

3/4-Power Body Signature 

Optimum Two-Arc Signature 

\ 

I 

M = 1.68 

h / l  =50 

FIGURE 8. -(a) Two-arc body shape compared to that of a 3/4-power body. (6) 'Two-arc sig- 
nature compared to that of a 3/4-Dower body. 
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FIGURE 9. - Three-arc body parameters. 
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FIGURE 11. -Pressure signature of a three-arc body. 

exceeds the initial flat top overpressure generated by the  reduced base 
forebody. 

CONFIGURATION IMPLICATIONS 

The question arises, “What type of three-dimensional wing-body 
would create a low overpressure signature of the type obtained by the 
three-arc parametric model?” It seems clear that the dominant part of 
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the equivalent area distribution specified by the first two arcs would be 
due to volume. The equivalent area distribution specified by the third 
arc would probably consist largely of lift with a diminishing volume 
component toward the aft part of the distribution. The rapid rise in lift 
probably would require the use of a relatively unswept wing. Preliminary 
studies have indicated that some extension of the notch width is possible 
without destruction of the low overpressure signature. This widening was 
accompanied by a reduction in the slope of area in the region of the 
second and third arcs. 

No attempt to reduce the magnitude of the trailing shock overpressures 
wgg made in the gtijc!y Hnwever, it wniilrl appear likely that an increase 
in the number of arcs would permit a similar reduction in the magnitude 
of the trailing pressures. This conceivably could be achieved by a boattail 
interaction with an underexpanded engine exhaust stream. 

Questions of drag, stability, and control were not considered in this 
study. With regard to drag, it should be noted that an equivalent area 
distribution of the three-arc type is not necessarily incompatible with 
supersonic area-rule requirements. At the 0" angle, however, a high drag 
component area distribution would be contributed to the mean area. 

CONCLUSION 

It would appear that the use of relatively unconventional configurations 
might produce significant maximum overpressure reductions in the 
mid-field. These configurations would involve slope of area discontinuities 
in the configuration 0" equivalent area distribution and probably employ 
a canard arrangement. 

The solutions discussed in this paper have been determined by the 
application of multivariable search techniques to a numerical model 
of the mid-field overpressure problem. Computation of mid-field signa- 
tures is a fairly sensitive process; hence, it is recommended that prior 
to further work in this area, methods for computing mid-field signatures 
be reexamined. Emphasis would lie in the adequacy of existing tech- 
niques when the body has slope of area discontinuities. 

Finally, on verification of mid-field signature techniques, it is recom- 
mended that the feasibility of employing a multiple-arc distribution for 
an SST configuration be examined, possibly using the overall system 
design techniques developed by Petersen and Gregory in references 18 
and 19. These configuration design techniques are also well suited to 
the multivariable search process (ref. 10). 
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' Status of Research on Boom Minimization Through Airstream 
Alteration 

DAVID S. MILLER 
NASA Langley Research Center 

A solution to the sonic boom problem would have a tremendous impact 
on the future of our air transport system. In fact, it has been estimated 
the potential market for worldwide supersonic transport (SST) sales 
would be more than doubled if supersonic flights were permitted over 
populated areas. Numerous studies have led to the development of 
reliable minimization techniques that employ aircraft shaping. There is 
no assurance, however, that these conventional minimization techniques 
will reduce the sonic boom to levels that would be unquestionably ac- 
ceptable for routine overland operation of SST's. As a result there has 
been recently an increased interest in unique and somewhat unconven- 
tional approaches to the sonic boom problem. One such approach, the 
subject of this paper, involves the use of heat or force fields to alter the 
airflow in the vicinity of the airplane to produce more acceptable sonic 
boom signatures. In this paper, the basic concepts of this approach are 
formulated and are related to the well-established body of information 
on sonic boom generation and propagation. For the more promising 
heat-field concept, problems to be anticipated in practical application 
are explored by applying a simple analysis procedure to a typical SST 
configuration. Preliminary estimates of heat distribution and power 
requirements are presented, and a method of concept implementation 
is discussed. 

SYMBOLS 

A E  

A, 

A0 initial phantom-body cross-sectional area 
airplane or model reference length 

effective cross-sectional area due to a combination of airplane 

airplane flight altitude or perpendicular distance from model 
lift, airplane volume, and the altered airstream 

to measuring probe 

1 
l p  phantom-body length 
M Mach number 

420-093 0 - 71 - 22 
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P power summation, (dP/dx) dx I: 
dP/dx power distribution 

Ap 
At,. 
To stagnation temperature 
x 

incremental pressure due to flow field of airplane or model 
rise time of sonic boom pressure signature 

distance measured along longitudinal axis from airplane nose, 
model nose, or initial change in phantom-body area (i.e., 
phantom-body nose) 

p m  

Subscripts 
max maximum 
min minimum 

CONVENTIONAL MINIMIZATION TECHNIQUES 

Numerous studies have attacked the problem of defining configuration 
requirements for sonic-boom minimization under various constraints. 
Some general signature characteristics and airplane shaping considera- 
tions for sonic boom minimization are illustrated in figure 1. Currently 
operational supersonic military aircraft and present SST designs would 
by expected to produce a classical N-wave, as depicted at the left of the 
figure, for most flight conditions. For these aircraft, shaping for sonic 
boom minimization (refs. 1 to 3) could effect limited reductions in bow 
shock overpressure and signature impulse, but the basic N-wave signa- 
ture shape would remain. 

It was first pointed out by McLean (ref. 4) that for somewhat longer 
and more slender configurations, representative of some SST designs, 
a near-field signature may be expected to extend from the airplane to 
the ground. Under these circumstances the signature shape would 
depend on the airplane shape; and, as illustrated by the plateau signature, 
further reductions in overpressure could be achieved through airplane 
design modifications (refs. 5 to 8). Although the plateau signature 
achieves moderate reductions in bow shock overpressure, the shocks 
and the attendant sonic boom noise still exist. 

Upon relaxation of all realistic restraints on airplane length and with ~ 

a very carefully controlled effective area development, the shocks them- I 
selves could theoretically be eliminated (refs. 9 and 10) as depicted by 
the finite rise time signature shown at the right of the figure. However, 
theoretical calculations indicate that in order to implement this minimi- 
zation technique, it would be necessary to increase the length of the SST ~ 

now under development by a factor of 3 or more with no attendant in- 
crease in airplane weight. Thus, at the present time, a finite rise time 
signature appears to be a desirable but unobtainable goal. Alternate 

' 

1 



BOOM MINIMIZATION THROUGH AIRSTREAM ALTERATION 327 
VOLUME 
LIFT = -s LEN DERNES s 

INCREASING 

FIGURE 1. -Airplane design for sonic boom minimization. 

methods for the generation of shockless signatures through the employ- 
ment of heat or force fields will be the subject of further discussion in 
this paper; however, at this point it seems appropriate to present evi- 
dence of the applicability of present theoretical methods utilized in the 
prediction and minimization of sonic booms. 

Based on the theoretical work of Hayes (ref. 11) and Whitham (ref. 12), 
numerical methods (ref. 13) have been developed for calculating both 
the near-field and far-field pressure signatures of complex aircraft con- 
figurations. Studies in which theoretically determined pressure signatures 
are compared with experimental data from wind-tunnel and flight-test 
programs indicate that present techniques provide reasonably accurate 
estimates of sonic boom characteristics for a wide variety of airplanes 
and operating conditions (refs. 14 to 17). The sample of wind-tunnel data 
given in figure 2 serves to substantiate the applicability of present pre- 
diction and minimization techniques to complex configurations. Pressure 
signatures were measured at  a variety of flow-field positions and test 
conditions for the two 4-in.-long SST models shown in the figure. These 
particular signatures were obtained five body lengths below the models 
at a Mach number of 1.4 and a lift coefficient of 0.1. Effective area de- 
velopments used in determining the theoretical signature are shown in 
the inset sketches. Although the signature for the basic model is quite 
complex, there is excellent agreement between experiment and theory. 
The signature shown at the right was obtained for a model that had 
fuselage modifications intended to result in plateau signature. Experi- 
mental data show that the desired plateau signature is not quite obtained, 
but a good approach is made. Differences between experiment and theory 
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- THEORY 
o EXPERIMENT 

BASIC MODIFIED 

VOLUME 

x - Bh x - ph 

FIGURE 2. - Wind-tunnel verification of prediction and minimization techniques, M =  1.4 
and hl l=  5. 

are attributed to inaccuracies in model construction and illustrate the 
extreme sensitivity of signature shape to small changes in model shape. 
The same theory applied to a 400000-lb airplane flying at an altitude of 
40 000 ft and M =  1.4 indicates a maximum positive overpressure of 2.2 
lb/ft' for the design at the left and a reduced value of 1.3 lb/ft* for the 
modified design. Application of these same design principles for cruise 
conditions results in only a small maximum overpressure reduction 
relative to that of the basic design. 

THE PHANTOM-BODY CONCEPT 

Changes in the physical shape of the airplane are required in the 
minimization techniques discussed thus far; however, it may be possible 
to create desired pressure signatures by employing heat or force fields 
to alter the airflow in the vicinity of the airplane without drastic changes 
in the airplane dimensions (refs. 10, 18, and 19). A phantom-body or 
airstream alteration concept for achievement of the highly desirable 
finite rise time signature is shown in figure 3. Depicted in the figure is an 
effective area development of an airplane that would produce an N-wave 
and a phantom-body effective area development, resulting from a com- 
bination of airplane and altered airstream, which would produce a shock- , 
free signature on the airplane flight track. The difference between the 
area development of the phantom body and that of the airplane defines 
the required airstream alterations that must be created by a carefully 
controlled heat or force field extending well ahead of and well behind ~ 
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the airplane. At ground positions away from the flight track, the airplane 
effective area development assumes a different shape and magnitude; 
thus, shock elimination at  all ground positions would require a carefully 
controlled azimuthally as well as longitudinally altered airstream. 

Illustrated in figure 4 are several alternate applications of the phantom- 
body concept that would be equivalent within the assumptions of area- 
rule considerations on which present sonic boom theory rests. The 
altered airstream whose boundary streamlines are represented by 
dashed lines can be located along the airplane axis as shown at the left 
or can be displaced below the airplane as shown at  the center. The air- 
stream alteration can also be the net result of many airstreams distributed 
in the manner shown at the right. The three methods illustrated are 
considered equivalent because they would produce identical sonic boom 
signatures on the flight track. The criterion for equivalence is that the 
area-rule-determined effective area developments of the airstreams and 
airplane combine to create the specified shape. For simplicity, the follow- 
ing analysis is restricted to the azimuth angle corresponding to the 
flight track and treats the on-axis case as shown at the left; however, 
it can be seen that analysis of the other systems would not be different in 
principle. The analysis is also restricted to the heat-field method, which 
appears to offer more hope for practical implementation. A treatment of 
both the heat-field and force-field methods is given in reference 18. 

EFFECTIVE 
AREA 

-AIRPLANE 
---PHANTOM BODY 

GROUND E,?, <AS..EAM + AIRPLANE) 

PRESSURE 

1 I 
DISTANCE, x - bh 

FIGURE 3. - Phantom-body concept. 
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FIGURE 4. -Equivalent application of concept. 

ANALYSIS 

The theoretical method employed to analyze the altered airstream 
flow properties and to estimate the heat distribution and power require- 
ments is based on the assumption that the flow within the airstream can 
be treated as the steady, one-dimensional, inviscid channel flow of a 
perfect gas. 

The solution is found by defining the channel area development, 
establishing boundary conditions, and applying influence coefficients 
and iterating. 

The assumptions included in this analysis are that the radial and azi- 
muthal variations are ignored, that the heat transfer from the airstream , 
is not considered, that the interaction of the airstream and the airplane 
is neglected, and that the shocks at the airplane surface are assumed to 
be weak. 

To check the validity of the solution, the nature of the modified air- 
stream flow properties is determined and a first estimate of minimum 

! 
i 
I 

power requirements is made. I 
For a given airplane and given flight conditions, the phantom-body area 1 

development that completely envelops the airplane area development and 
produces a finite rise time sonic boom signature can be determined. The 
forepart of the area development has a &power variation with length 
(an isentropic spike). The Whitham theory provides the length-diameter 
relationship to prevent bow shock formation for a specified Mach 
number and altitude. Prevention of a tail shock is accomplished by a 
design process for the remainder of the phantom-body area develop- 
ment, which involves trial-and-error application of a computing program 
solution of the Whitham equations (ref. 13). To take account of the 
favorable “freezing” effect of a real atmosphere through employment of 
the atmospheric propagation program of Hayes (ref. 20) requires further 
iteration to define phantom-body shape characteristics for a specified 
rise time. 
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The airstream channel is defined as the difference between the 

phantom-body cross-sectional area and the effective cross-sectional 
area of the airplane. The boundary condition of the longitudinal pressure 
distribution along the channel is established by calculating the surface 
pressure on the phantom body using small-disturbance theory (ref. 21) 
and by assuming the pressure to be constant across the channel. The 
governing differential equations written in terms of influence coefficients 
(ref. 22) are then solved by iteration for successive increments along 
the channel. A thorough description of the solution procedure is given 
in reference 18. 

The applicability of the present simplified analysis procedure in treat- 
ing practical problems of phantom-body concept implementation can 
be assessed by examining the assumptions and simplifications employed 
in its development. The complexity of the problem has been significantly 
reduced by ignoring radial and azimuthal variations that would be re- 
quired for shock elimination at ground positions away from the flight 
track; however, this simplified treatment of the problem is not expected 
to significantly alter the results of this preliminary study. 

Another basic assumption is that all of the distributed heat energy 
is confined within the boundaries of the airstream and is completely 
effective in creating the desired airstream alterations. A more realistic 
approach would consider heat transfer across the airstream boundaries, 
which would in turn influence the entire flow field in a different manner 
than does the heating with no heat transfer. The relationships between 
the heating rates and airstream variations for this case cannot be easily 
established and are beyond the scope of this preliminary analysis. Under 
the assumption of no heat transfer, the manner in which the local heating 
influences the flow is well defined. 

It is also recognized that for strong shocks formed immediately at 
the airplane surfaces, the airstream expansions might not be fully ef- 
fective in providing a cancellation. However, a typically pointed airplane 
nose or a subsonic leading edge wing need not form strong shocks, and 
cancellation should be possible. Other complicating factors are the 
effects that variations in the airstream flow properties will have in alter- 
ing the aerodynamic performance and flow-field characteristics of the 
airplane and the effects that airplane-produced disturbances will have 
on the airstream. This interaction.between the airstream and the airplane 
is neglected for results presented in this paper. 

Subject to the previously discussed assumptions and simplifications, 
the present method of analysis is believed to be sufficient to indicate 
the nature of the altered airstream flow properties and to make prelim- 
inary estimates of the required heat distribution and minimum power 
requirements. 
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CONCEPT APPLICATION 

Problems to be encountered in employing the phantom-body concept 
for sonic boom minimization can best be explored by applying the concept 
to an actual airplane configuration. The baseline configuration used in 
the following discussion is a typical proposed supersonic transport hav- 
ing a length of 300 ft and a cruise Mach number of 2.7 at an altitude of 
60000 ft. The cruise weight of the airplane is assumed to be 575000 lb, 
and no account is taken of weight increase due to additional onboard 
equipment required to generate the altered airstream. 

!l!zgrstiens ef the resu!ts of the study 2s repnrted herein are restricted 
to the heat-field application, which at present appears to be of greater 
practical interest. In reference 18, attention is given to both the heat- 
and force-field methods. 

As shown in figure 5, the creation of a finite rise time signature 
(Atr = 0.03 sec) required airstream modification extending over 200 ft  
ahead of and over 400 ft behind the 300-ft-long airplane. An initial air- 
stream channel area of 500 ft' was selected for reasons that will be dis- 
cussed later. It is seen that because a typical airplane configuration with 

1500 s 
i=$= 1000 
2 =  iLI 5oo k a a  

0 
w 

a 0- 

3 ,  

-2 n 
I I 

0 500 1000 
DISTANCE x - ph, ft 

FIGURE 5. -Concept application for an SST, M = 2.7 and h = 60 OOO ft. 



BOOM MINIMIZATION THROUGH AIRSTREAM ALTERATION - 

FIGURE 6. -Airstream flow properties. 

irregularities in effective area development was chosen, the smooth 
'effective area required for the phantom body can be created only with 
a modified airstream channel that also displays irregularities. 

Local variations in the airstream channel area cause local variations 
in fiow properties, as  illustrated in figure 6. Extreme variations in Mach 
number and temperature could, of course, result in a degradation of 
aircraft aerodynamic performance and would intensify already severe 
heating problems. A very large initial channel area would minimize these 
problems but would make the task of insuring the proper distribution of 
heat that much more difficult. 

The power requirements shown in figure 7 demonstrate the seventy 
of the problems to be encountered in attempts at practical implementa- 
tion of the phantom-body concept. Irregularities and extreme gradients 
in the local power distribution indicate that great care would be required 
in the selection and arrangement of heating devices. An even more 
difficult problem is pmed by :he necessity of power removal or refrigera- 
tion dictated by the presence of the negative values of local power. AS 
will be explored in somewhat greater detail later, the power removal 
requirement could be avoided by reshaping of the airplane, but this in 
itself would be a rather drastic measure. From the power summation 
plot, it is seen that in the forepart of the airstream, it is necessary to 
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FIGURE 7. -Airstream power requirements. 

add power to the airstream amounting to more than the propulsive power 
output supplied by engines producing an estimated 75 000 lb of thrust ' 
for the assumed flight conditions. Even if a reasonably efficient system 
for recycling heat energy could be devised to result in relatively low net 
power consumption, the equipment would be sized by the huge maximum 
power requirement of 400 million W. 

It should be recognized that in the unlikely event of the development 
of efficient means of processing the airstream to drastically reduce cross- 
sectional area, the ideas of Dr. Resler (ref. 23) would be worthy of further 
consideration. His approach may be considered as an extreme application 
of the phantom-body concept in which a constant area body would be 
created by stream tube reduction only. If this could be accomplished, 
no disturbance of any kind would be felt outside the phantom-body 
boundaries. I 

An important factor in analyzing the phantom-body concept is the' 
selection of the phantom-body capture area A,. Variations in the  flow^ 
properties and the maximum power requirements with changes of A ,  are 
shown infigure 8. As expected, the flow properties are very sensitive 
for small values of Ao; therefore, to avoid large changes in the flow 
properties, which in turn alter the airplane performance characteristics, 
a large initial area is desired. The maximum power is fairly insensitive1 
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to changes in A0 throughout the range considered; thus, an area of 500 
ft2 appears to be a reasonable selection. Larger values that do not 
significantly reduce flow property variations would create even greater 
problems of heat-field distribution. 

The phantom-body length is the primary factor upon which the sonic 
boom signature characteristics as well as the power requirements de- 
pend. Figure 9 shows how the rise time At,. increases and the maximum 
ground overpressure Ap,,, decreases as the phantom-body area develop- 

' ment is stretched out. In selecting a reasonable body length, no values 
\ less than 900 ft were considered because lengths less than that produce 

1 finite rise time. Allowance has been made for the somewhat reduced 
ngths that result from an exacting treatment of real atmosphere effects 
Torded by use of the Hayes computer program. As expected, the power 
:quirements increase with increasing length. The desired rise time is 
le primary factor for defining the necessary phantom-body length and 
le maximum power requirements. A rise time of 30 msec and a corre- 
Ionding body length of 975 ft were chosen for the example to provide 
near minimum power requirement while offering significant noise 

mefits (ref. 24) and a margin against possible adverse effects of atmos- 
ieric distortion. 
The results of the studies reported in reference 18 indicate that power 
iquirements become less for lower Mach numbers, but not to the extent 

F P T o . m a x  

INITIAL AREA Ao, ftL 

FIGURE 8. - Phantom-body initial area considerations 
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FIGURE 9. - Phantom-body length considerations. 

that the scheme appears to be more practical. For high Mach numbers 
which are more attractive from an economic standpoint, the powei 
requirements are greater. For a given Mach number, power requirement: 
are not significantly less at altitudes above or below those normall! 
selected for cruise economy. 

THERMAL FIN CONCEPT 

This discussion would not be complete without mention of recen 
studies of ingenious methods for concept implementation conductec 
by Dr. S. B. Batdorf (ref. 25) and Dr. R. J. Swigart (ref. 26) of Aerospacc 
Corp. Of several methods considered, the thermal fin appears to be thc 
more practical and will be described with the aid of figure 10. The uniquc 
features of the thermal fin are the direct burning of fuel to produce thc 
heat field and the introduction of the heat below the airplane itself 
Dr. Batdorf points out that with direct burning of jet fuel, the powe 
requirements for bow shock elimination are not necessarily prohibitivi 
and that locating the heat field below the airplane would be attractivi 
from the standpoint of airplane thermal environment and safety. 
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The conceptual single thermal fin arrangement illustrated at the center 

of the figure is compared with the previously discussed unimplemented 
a1 distribution of heating and cooling shown at the left. Because the 
rmal fin as presently conceived provides for heat addition only, 
airplane must be reshaped and the phantom-body forepart must be 

ended an additional 27 ft to provide an airstream that requires no 
it removal. For the single thermal fin, no significant increase in power 
'r the basic axial concept is required. With direct burning during the 
personic portion of a coast-to-coast flight, it is estimated that power re- 
rements can be met with about a 20percent increase in onboard fuel. 
ihould be noted that the single thermal fin would be effective in elimi- 
ing only the bow shock, and the tail shock would remain unless some 
ans is provided for properly shaping the rear portion of the phantom 
1y. The possibility of employing a second thermal fin for tail shock 
)pression was considered and is illustrated in the right of the figure. 
timates indicate that total shock elimination employing thermal fins 
uld require about 60 percent additional onboard fuel, with no account 
ng taken of the weight and performance penalties of the system. 
t is obvious that the thermal fin that must extend about 80 ft below 
airplane would pose severe if not insurmountable problems related 

aircraft performance, stability, structure, and weight. However, be- 
ise of the urgent need for a solution to the sonic boom problem and the 
t that the power requirements, though large, are not necessarily pro- 
litive, a wind-tunnel test program is planned to provide a preliminary 
ication of the feasibility of the concept. 

SINGLE 
X l A L  DISTRIBUTION THERMAL F I N  
ATING AND COOLING) (HEATING ONLY) 

FIGURE 10. -Thermal fin implementation. 

MULTIPLE 
THERMAL FIN 

(HEATING ONLY) 

12 x lo8 watts r 
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FIGURE 11. -Models for wind-tunnel test propam. 

The wind-tunnel test program will involve the testing of the six models/ 

NASA Langley 4- by 4-ft supersonic wind tunnel, and the remainder o i illustrated in figure 11. The tests themselves will be conducted in th 

the program (design and construction of models, data reduction, analysis, 
and reporting) will be conducted by Aerospace Corp. under contract t 4 NASA. I 

The test program can be divided into two parts. The first part consistq 
of testing the four nonlifting bodies shown diagonally across the top o 
the figure. The basic model in this series is a 10-in.-long body of revol 
tion having an effective area development representative of an SST a1 
cruise speeds. The second model is essentially an isentropic spike mod 
fication of the basic model with an additional length of 6 in., which wa. 
designed to produce a finite rise time signature. Each of the remainin4 
two models in this series have a vertical fin extending about 4 in. below 
the model nose. The fin models are designed to have identical effectiv 
area developments and thus produce identical signatures as the isentropi 
spike model. The solid mechanical fin is about 40 percent larger than tu 
thermal fin; this difference will be simulated by means of hot-gas ejei 
tion. The second part of the test program involves the testing of two liftin 
wing-body models shown at the lower left of the figure. The basic win 
body model will produce a lift-induced sonic boom pressure signatu 
with shocks. The wing-body model with the thermal fin is designed t! 

suppress the shocks. 

4 
'1 

1 

f 
I 
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For each of the models, signatures will be measured at M = 2 . 0  for a 

minimum of two model-probe separation distances. Both thermal fin 
model designs incorporate the instrumentation necessary for measuring 

I the properties of the gas being emitted. 

alterations, it was found that power amounting to more than the airplane’s 
propulsion power output must be supplied to the forepart of the airstream 
and by some unknown means extracted from the aft part. Significant 
variations in the airstream flow properties and large gradients in the 
heat distribution were also encountered. 

The thermal fin implementation of the phantom-body concept proposed 
by Aerospace Corp. can be extended to prevent formation of both the 
bow and tail shock without the necessity of heat extraction; however, 
,airplane reshaping as well as thermal fin heat addition is required. For 
a typical SST at cruise speed, it is estimated that, with direct burning, 
the bow and tail shock elimination could be accomplished with 60 percent 
additional fuel. 

Because of the tremendous impact that a solution to the sonic boom 
problem would have and in spite of the many problems associated with 
the airstream alteration approach for sonic boom minimization, it is 
believed that further study is warranted, and a wind-tunnel test program 
s planned. No other approach has yet been suggested for elimination of 
sonic boom shocks that is not directly contradictory to the accumulated 
rnowledge of sonic boom phenomena or that does not require airplane 
.engths far beyond any present contemplations. 
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Measured and Calculated Sonic Boom Signatures From Six 
Nonaxisymmetric Wind-Tunnel Models 

H. L. RUNYAN, H. R. HENDERSON, 0. A. MORRIS, AND D. J. MAGLIERI 
NASA Langley Research Center 

A considerable amount of effort has been directed toward the estab- 
lishment of adequate sonic boom prediction techniques, and various 
studies have related to the problem of minimization of the sonic boom 
through airplane design. Extensive wind-tunnel test programs, beginning 
about 10 yr ago, have investigated a variety of models including basic 
research shapes, airplane components, and complete airplanes (refs. 1 
and 2). In addition, investigations in wind tunnels have provided data 
for evaluation of certain minimum boom and minimum drag shapes and 
for evaulation of a number of nonconventional airplane concepts as well. 

The above studies have shown that linearized theory (with appropriate 
corrections) provides reasonably accurate predictions of the sonic boom 
pressure signatures. The fundamental concept in the theoretical treat- 
ment is the replacement of a three-dimensional aircraft or other complex 
shape by an equivalent body of revolution. It is presumed that the three- 
dimensional flow field can be adequately represented locally (within a 
specified sector of the flow field and at reasonably large distances) by 
the axially symmetric flow field of a properly defined body of revolution. 
Definition of the required body of revolution, which requires a considera- 
tion of both volume and lift effects, is provided by application of area-rule 
principles outlined by Hayes (ref. 3). The subsequent calculation of the 
flow field, including shocks, follows the method introduced by Whitham 
(ref. 4). The results of wind-tunnel programs indicate the applicability of 
the simplified approach at distances as close as one or two body lengths 
for shapes that approach axial symmetry and at somewhat larger ratios 
for more complex rnnfigiiratinns. 

The work of reference 2 extended these wind-tunnel studies and 
established the adequacy of the above theoretical methods for a body 
shape that departed drastically from a body of revolution. This particular 
configuration consisted of a rectangular planform with a flat upper sur- 
face alined to the airstream and with the lower surface made up of several 
steps. 0 1 1  die basis of two-dimensional flow conccpts, lifting presswes 
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are created on the lower surface for a small distance behind the shock 
wave. The flow is then turned to the original free-stream direction, 
thereby creating a shock-canceling expansion. These events are assumed 
to be repeated for each step on the model. The tests indicated that the 
lower surface two-dimensional flow pattern changes rapidly and becomes 
predominantly three-dimensional in character within about five body 
lengths for this nonaxisymmetrical configuration. 

As part of the studies performed in reference 2, six other nonaxisym- 
metric model configurations were constructed and tested in the wind 
tunnel to study the growth of the pressure field as a function of distance 
from the models. The models consisted of two 40” delta and four rec- 
tangular planforms including one model with side plates that force 
two-dimensional flow to exist over the model. 

The purpose of this paper is to present the results of these wind- 
tunnel tests in the form of measured sonic boom pressure signatures 
at three distances below the models at M=2.7. A comparison is made 
of these experimental data with theoretical signatures based on two- 
and three-dimensional theories. 

MODELS 

The six models used in the present studies are shown in figure 1. 1 
All models were constructed of stainless steel and had a width of from 1 
2 to 4 in. (5.1 to 10.2 cm), a thickness of about 0.25 in. (0.635 cm), and 
an overall length of 12 in. (30.5 cm), 4 in. (10.2 cm) of which was con- 
sidered to be effective body length. The remaining 8 in. (20.3 cm) of the 
model was of constant cross-sectional area to provide for the sting sup- 
port. One sting support adapter was used for all models. The characteris- 
tics of the models are as follows: 

1 
Model 1 is a 40O-V-delta planform, with a wedge-shape profile, and a 

lower lifting surface angle of 5”. 
Model 2 is a “stepped” version of the basic 44”-V-delta wedge (model ’ 

1). Three “steps” were incorporated and consisted of a 5” lifting surface 1 
angle followed by a straight portion (00) that created compression and 
expansion shocks. 

Model 3 is rectangular in planform and wedge shape in profile with a 
lower lifting surface angle of 5”. 

Model 4 is a “stepped” version of the basic rectangular 5” wedge 
(model 3). Three “steps” were incorporated and consisted of a 5” lifting 
surface angle followed by a straight portion (00). Model 4 was similar to 
the model tested in reference 2, except that the constant area sting sup- 
port portion of the present model was lengthened from 4 in. to 8 in. (10.2 
cm to 20.3 cm) in an attempt to minimize the effect of the sting adaptor 
support on the model flow field. 

, 
I 

i 

I , 
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MODEL 1 MODEL 2 

MODEL 3 MODEL 4 

MODEL 5 MODEL 6 

FIGURE 1. -,Photographs of minimum sonic boom models with sting adaptor. 

Model 5 is a rectangular “stepped V-shape” wedge having the same 
number of steps (three) and lifting surface angles (5” to 0”) as model 4. 

Model 6 is a rectangular “stepped” wedge with side plates. In effect, 
it is model 4 with side plates attached. The side plate angle was estab- 
lished at 27” so that at M= 2.7, for which the Mach angle is about 22”, the 
bow shock and the flow behind the bow shock are contained between the 

In addition, these side plates were made thin and alined to the stream 
flow to reduce any distortion of the basic flow field from the “stepped 
model.” 

- ? . I .  - l - * . .  / - - !&I.?. .  - 1  ....- - I  ! ~ -  ,,r Q .... \ 11-1  . I L . - - - .  P ....... 1 . ~  ...- 1 1\ 
a iuc  piarca  { v v i ~ i i i ~ i  a u u u L  a u-111. (JO.O-LIIIJ  iauiai U l a L a I l b c  ilulll LIIG 1 l l u u G l ) .  

APPARATUS AND TEST 

The six sonic boom models were tested in the Langley Unitary Plan 
Wind Tunnel (ref. 5) at a Mach number of 2.7. a stagnation pressure of 
944 lb/ftS (45.2 x lo3 N/mz), and a Reynolds number per foot of 1 X lo6 or 
3.28 x 106/m. The test section is 4 by 7 ft long (1.2 by 2.13 m). 

The model mount and the method of measurement of the pressure 
field below the model are the same as those given in references 6 and 7 
and are shown schematically in the sketch of figure 2. The model and 
adaptor were mounted to a translating support from the tunnel sidewall. 
A reference probe and static measuring probe were mounted on a support 
attached to the main sting. Pressure measurements of the shock field of 
the model were obtained by translating the model and its associated 
shock fie!d ~ C ~ O S E  the measr?rir?g prcbes. These fcw-fie!d surveys were 
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occur in all cases except for model 5 (fig. 4(e)), for which shock perturba- 
tions still persist. 

Agreement of the experimental pressure signatures with those of the 
three-dimensional theory is good for models 1 ,2 ,  and 5 and is also fairly 
good for models 3 and 4. This reasonably good agreement with theory 
was not expected close to models of the type tested. In general, the 
agreement improves as the distance from the models increases, and 
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FLOW 
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p l a n  v iew 

profile v i e w  

FIGURE 3.-Schlieren photographs of model 4 at a Mach number of 2.7. 

although some rounding and smoothing of the experimental results are 
evident (due to the effects of model vibrations and probe boundary layer 
as discussed in ref. 6), fairly good agreement is obtained even to the num- 
ber of shocks and their locations. The strong influence of the sting 
adaptor is apparent in the measured data and is also predicted by theory. 

The results obtained using model 6, which had side plates to induce 
two-dimensional flow, are given in figure 4(f ) .  It can be seen that the 
three-dimensional theory greatly underestimates the overpressure 
magnitude particularly at h = 5 in. or 12.7 cm. In this case, a much better 
estimate of the signature is obtained by using two-dimensional theory 
(ref. 9). This improved result would be expected particularly at the close- 
in distance (h= 5 in. or 12.7 cm) because the pressure survey was made 
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between the model side plates where two-dimensional flow was forced to 
exist. 

The above results indicate a rapid transition from two- to three- 
dimensional flow for the six models tested. In some cases, the three- 
dimensional flow field is established within one body length; in all cases 
tested, in at least five body lengths. 
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I12 1 cml 

la1 Model 1 
5 

0 Eqerimcnt 

mew -3  

- 3-D i m  amter  _ _ _ _ _  3-0 without adapter h. inches 

10 
125.4 cml 

4- 
2-0 

--- 
I 

0 

- 1  

h. inches 
M 

1% 8 cml 

0 4 8 12 16 20 2 4 0  4 8 12 16 m 24 

Distance along model. bx, inches 

Distancc along model. Ax. centimeters 

FIGURE 4. -Theoretical and experimental pressure distributions obtained at a Mach number 
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CONCLUDING REMARKS 

A wind-tunnel experiment using six models has been conducted at 
M = 2 . 7  to study the growth of the pressure field as a function of distance 
from the model. The models consisted of two delta and four rectangular 
planforms including one model with side plates. The measured sonic 
boom pressure signatures are compared with calculated signatures based 
on the two- and three-dimensional flow theories. 

The results indicated a rapid transition from two-dimensional flow 
characteristics, known to exist near the model lower surfaces, to the 
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of about one body length. At the farthest measurement point, five body 
lengths, better agreement was obtained using three-dimensional flow 
theory. 

These results suggest that three-dimensional flow about the models 
is established very rapidly, in some cases, in about one body length. The 
results also serve as a reminder that minimum or zero sonic boom con- 
cepts based on two-dimensional reasoning can be very misleading and 
that the rapid development of three-dimensional flow is significant and 
must be taken into account. 
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t Variability of Sonic Boom Signatures With Emphasis on the 
Extremities of the Ground Exposure Patterns 

HARVEY H. HUBBARD, DOMENIC J. MAGLIERI, AND VERA HUCKEL 
NASA Langley Research Center 

There is considerable concern about the nature of sonic boom exposure 
patterns near their lateral extremities, particularly with regard to atmos- 
phere-induced variability. Lack of systematic measurements has left 
voids in our knowledge of the signature wave shapes and the overpressure 
gradients as a function of distance near the points of cutoff due to atmos- 
pheric refraction. The purpose of this paper is to review the pertinent 
published measurement results and to describe the unpublished results 
of some recent atmospheric refraction experiments that were performed 
to define better the physical phenomena involved. 

PROBABILITY DISTRIBUTIONS 

The overpressure measurements made to date indicate substantial 
variability, as illustrated in figure 1 (refs. 1 and 2). The probability of 
equaling or exceeding a given ratio of the measured overpressure value 
to the maximum predicted value (which occurs on the flight track) for 
particular flight conditions of the F-104 and XB-70 is shown. The data 
have been plotted on a log normal scale, and straight lines have been 
faired through the data points as an aid in interpretation. The data as- 
sociated with lines having lesser slopes have the greater variability. On 
the left-hand side of figure -1, it can be seen that the data measured at a 
point 10 miles from the ground track for the F-104 at an altitude of about 
9.15 km (30 OOO ft) have markedly more variability than the data for the 
measuring point on the ground track. The net result is that at the lowest 
probability values, the lateral station data exceed in amplitude those 
measured on the track. 

Data obtained for the XB-70 aircraft at an altitude of 18.3 km (60 000 ft) 
are plotted in a similar manner in the right-hand side of figure 1. Again, 
it is obvious that the measured data taken at a station 13 miles from the 
ground track have more variability than those on the ground track. The 
maximum values of overpressure measured off the track approach the 
maximum values of the on-track data. The variability for the high-Mach- 
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FIGURE 1.-Probability of equaling or exceeding a given value of the ratio of measured 
overpressure to maximum calculated overpressure. (a) F-104. (b) XB-70. 

I number, high-altitude data of the XB-70 is noted to be similar to that for I 

I the lower Mach number, lower altitude data of the F-104 airplane. 

1 
I 

I 
LATERAL SPREAD PATTERNS 

The trends noted in the data of figure 1 have caused some concern 1 
about the situation that may exist at greater distances from the ground 1 
track for which there was, until recently, little experimental data. 1 
There has thus been some speculation about the validity of predictions of 
overpressures at the greater lateral distances where atmospheric 
focusing may be a very significant factor (refs. 3 to 6). 

Sample measured ground overpressure data for the XB-70 aircraft 
over a range of lateral distances for two different flight conditions are 
given in figure 2 (refs. 1 and 7). Each of the data points shown represents 
averages of measured values for several microphones as indicated in 
the figure. The vertical lines through the data points indicate the extreme 
values of the data. It can be seen that the maximum measured values 
occurred on the track, values nearly as high occurred at points several 
miles off the track, and relatively small values were measured near the 
edge of the pattern. 
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Also shown are curves calculated by means of the method of Middleton 

and Carlson (ref. 8). The cutoff distances due to refraction are shown as 
dotted vertical lines according to the method of Randall (ref. 9). It can 
be seen that the average ground overpressure values from a large number 
of measurements are in general agreement with the calculated values on 
or near the ground track. As lateral distance from the ground track 
increases, however, the measured average values are generally lower 
than the calculated values. This trend appears to be valid out to the 
extreme distance of the measurements. The calculations indicate a 
sudden drop in pressure amplitude in the region of cutoff; however, this 
may result in part from the fact that only the Mach cutting plane corre- 
sponding to locations directly below the aircraft was used in the 
calculations. 

The trend toward a gradual reduction of overpressure value as a 
function of lateral distance is also illustrated by the data of figures 3, 
4, and 5, which apply to the SR-71 (ref. lo), B-58, and F-104 aircraft, 
respectively, but for operating conditions different from those of the 
XB-70. The B-58 and F-104 measurements were obtained within 15 
minutes after the XB-70 data and used the same microphone arrays. 
For several aircraft and for a range of flight conditions, it is seen that 
pressure disturbances were measured at distances beyond the theo- 
retically predicted cutoff points. 

0 33- 60 MIKES 
M - 1.5 at 11.26 km *Po 0 3 - 5  MIKES 

(37wo n, 
4 FLIGHTS 

CUTOFF DUE TO 
REFRACTION 

I 

M = 2.0 at 18.3 km 
f60m ft) 

13 FLIGHTS 

L 1 I 

60 40 20 0 20 40 60 km 

LATERAL DISTANCE FROM GROUND TRACK 

FIGURE 2.-Sonic boom overpressures for the XB-70 aircraft as a function of lateral 
distance for two different flight conditions. 
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FIGURE 3.-Sonic boom overpressures for the SR-71 aircraft as a function of lateral , 
distance for two different flight conditions. 
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FIGURE 4. -Sonic boom overpressures for the B-58 aircraft as a function of lateral distance 
for two different flight conditions. 



VARIABILITY OF SONIC BOOM SIGNATURES 355 

M = 1.3 at 5.64 km 
Nlm' lblfl' 118500 f l l  

APO 

3 FLIGHTS 
33-60 MIKES 

0 3-5 MIKES 

THEORY 

CALC. CUTOFF 

n a - 

M = 1.4 at 6.4 km 
(21000 ft) 

8 FLIGHTS 

200 

l j  :[--A&- 40 32 24 16 8 0 8 16 24 32 40 st. mi. 

60 40 20 0 20 40 60 km 

LATERAL DISTANCE FROM TRACK 

FIGURE 5. -Sonic boom overpressures for the F-104 aircraft as  a function of lateral distance 
for two different flight conditions. 

MEASUREMENTS NEAR LATERAL CUTOFF 

To study the situation in this cutoff region, a series of definitive studies 
was conducted with an F-104 airplane for the conditions of figure 6 (refs. 
1 and 11). Data at  the top of the figure were obtained for flights at various 
lateral distances out to a distance of approximately twice the predicted 
cutoff distance with microphones spaced about 1 mile apart. The data 
of figure 6 also suggest a general decrease in the pressure amplitudes in 
the region of cutoff. The fact that valid measurements were made at large 
distances beyond the cutoff point is believed to be due to the fact that 
propagation phenomena at the near-grazing incidence condition are very 
sensitive to local changes in the atmosphere. A significant finding of 
these tests was that the wave shape changed in a systematic manner as 
a function of distance as indicated by the sketches on the figure. For 
instance, the waves associated with distances shorter than the predicted 
cutoff distance were N-shape, whereas those at the extreme edge of the 
pattern did not have any particular identifying features. Furthermore, 
the rise times of the waves generally increased with lateral distance. 

Data for similar flight conditions, but for somewhat less stable atmos- 
pheric conditions, are plotted in the bottom part of figure 6. The trends 
of these latter data are similar to those at the top of the  figure except 
that more scattering is evident i11 the measurements. In addition. a pres- 
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FIGURE 6.-Measured lateral spread patterns for an F-104 aircraft at M =  1.5 at an altitude 
of 11.35 km (37 200 ft) mean sea level (msl) and for two different times of day. 

FIGURE 7. -Sketch of experimental test setup used to define sonic boom overpressures 
near the lateral cutoff. 
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FIGURE 8.-Measured sonic boom signatures near lateral cutoff for an F-104 aircraft at 
M =  1.3 at 10.3 km (33 700 ft) msl .  

sure signature is observed (second sketch from the bottom) which, ac- 
cording to some theoretical and experimental studies, suggests the 
presence of a caustic. A caustic condition is associated with ray con- 
vergence, with the result that stream tube area is substantially reduced. 
The associated U-shape pressure signatures represent focus conditions 
that may result in overpressure enhancement. (See ref. 12.) 

To evaluate the overpressure patterns in the region of the caustic, 
overflight measurements were  made with the use of special microphone 
arrays, the measuring stations being about 61 m (200 ft) apart. The setup 
is indicated schematically in figure 7. A 975.4-m (3200-ft) horizontal and 
a 45.8-m (1500-ft) vertical microphone array are indicated. The flights 
were accomplished so that the edge of the exposure pattern was placed 
in or near this array. The data of figure 8 are representative of those 
obtained from the 975.4-m (3200-ft) array during one aircraft flight. A 
definite trend in signature shape variation is evident. 

By means of repeated flights offset in lateral distance from the tower, 
a large number of overpressure signatures were measured at the edge 
of the pattern. Some of these signatures and the associated peak over- 
pressure data are presented in figure 5. It can be seen that there is a 
general decrease in overpressure as distance increases. There is also 
a corresponding trend from N-shape signatures, which are observed as 
booms, to signatures with no definite shape characteristics, which are 
observed as acoustic rumbles. Although U-shape waves are observed in 
the data records, there is no indication of large overpressure enhance- 
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FIGURE 9. -Variation of sonic boom overpressure near lateral cutoff for an F-104 aircraft 
at M =  1.3 and at an altitude of 10.3 km (33 700 ft) msl.  

ment as is observed at grazing incidence on the ground track (see paper 
by Maglieri, Hilton, Huckel, Henderson, and McLeod). 

CONCLUDING REMARKS 

The following concluding remarks may be drawn from the data pre- 
sented. The overpressures generally decrease and rise times are gen- 
erally greater as lateral distance from the ground track increases. 
Overpressure variability is greater at locations 10 to 13 miles laterally 
from the ground track than for locations on the track for a range of 1 
Mach numbers and altitudes. The maximum measured overpressure 
values at 10 to 13 miles off the track for a range of altitudes and Mach 
numbers are of the same order of magnitude as those measured on the , 
track. Although signatures representative of caustic conditions were 
observed near the edge of the pattern, there was no evidence of sub- 
stantial overpressure enhancement. 

I See p. 243. 
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Finite Difference Calculation of the Behavior of a Discontinuous 
Signal Near a Caustic 

R. SEEBASS, E. M. MURMAN, AND J. A. KRUPP 
Boeing Scientific Research Laboratories 

It is important, as was mentioned elsewhere in these proceedings, 
that we be able to predict sonic boom overpressure signatures in the 
vicinity of a caustic. And, in particular, w e  need to be able to calculate 
it when the caustic surface intersects, or when it is near, the ground. 
While the analytical formulation of this problem is a simple one (ref. l), 
the solution by formal mathematical techniques presents great dif- 
ficulties.’ Consequently, there is great impetus for developing numerical 
techniques that can provide such predictions. Here we report on the 
extension to the caustic problem of a technique developed by Murman 
and Cole for transonic flows (ref. 2). This technique and some recent 
calculations are described in reference 3. The goal of such calculations, 
of course, is to be able to theoretically predict pressure signatures 
such as those measured during the French flight tests “Operation Jericho 
Virage” (ref. 4) and those reported at this conference.* Figure 1 is a 
sketch of the ground pressures recorded under a Mirage IV aircraft 
in a 2.lg bank at the conditions specified (ref. 4). We see the “incident” 
N-wave clearly, the “reflected” wave with vestiges of the linear loga- 
rithmic infinity (e.g., trace i), and the “transmitted” and rapidly atten- 
uated wave (trace a). We also see how the reflected and incident signal 
(trace c) have combined to produce the large overpressure shown in 
trace b. Although the pressure signatures that occur in practice are 
essentially N-waves, it is clear that if the behavior of a single shock 
wave near a caustic can be calculated, then the behavior of more complex 
signatures there can also be calculated. 

FORMULATION AND DIFFERENCE EQUATIONS 

We wish to solve the nonlinear equation 

(7) + J l f ) J l S S  - J l V V  = 0 i 

See p. 87. 
2 See p. 243 

(1) 
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FIGURE 1.-Ground pressure measurements near a caustic for a 2.lgbank for the conditions 

indicated. (From ref. 4.) i 

with certain prescribed boundary conditions. The prescription of the 
boundary conditions for Tricomi’s equation 1 

that insures the existence of a unique solution is well known (ref. 5). On 
physical grounds it is clear that an analogous prescription applies for 
equation (1). To calculate the solution to equation (1) by finite differences, 
it is necessary that we prescribe boundary conditions on a finite domain. 
We take the solution to equation (2) for a prescrihed incoming signal at 
infinity as representing the asymptotic behavior of equation (1). In 
particular, we presume that the signal strength at -(=~q 3’2=.O(l! is 
small and characterized by a quantity p, and that the linear solution is a 
valid approximation to the full solution on the boundary of a domain D, 
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consisting of the two characteristic arcs-(& 1 =k3q3/’ for q > 0, and 
the lines 161 = 1 and q =- ( 3 / ~ ) 2 / 3  for q < 0. 

We pose, then, the following boundary-value problem: Solve equation 
(1) inside the domain D, depicted in figure 2, with boundary data deter- 
mined by the solution to equation (2) in D. On that part of the charac- 
teristic arc , $ + 1 = # ~ ) 3 1 ~  for which q++g >O, we provide boundary 
data appropriate to a hyperbolic equation, namely + and +t. On that 
part of the characteristic arc ( - 1 =-3q3/‘ for which q + $6 > 0, no 
boundary data are provided because the solution is determined uniquely 
without them. On the remainder of the boundary q + +6 < 0 and bound- 
ary data appropriate to an elliptic equation, the values of +, are prescribed. 

To effect a numerical solution, we divide the 4 axis of D into 2N equal 
intervals of length A and the q axis into the intervals determined by the 
family of linear characteristics emanating from the mesh points t i  = iA, 
i = O ,  & 1, . . ., & N .  Thus the mesh points are determined by 

and 

rl 
4 

FIGURE 2.-Domain of solution and mesh spacing. 

(3) 
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where i, j = O ,  1, . . .’ N. We then solve the difference equation for 
equation (1) using a first-order implicit scheme when the equation is 
hyperbolic and a second-order centered scheme when it is elliptic. Rea- 
sons for choosing this scheme are discussed in references 2 and 3. 
Basically, we choose an implicit scheme in the hyperbolic domain to 
insure stability regardless of the mesh size in the timelike direction f .  
A first-order or third-order scheme in the hyperbolic domain insures that 
difference equations correspond to the underlying physical processes, 
which are dissipative. A second-order scheme in the hyperbolic region 
would be dispersive; in the related transonic cz!cu!afnns it wzs f c m d  
to be inferior to the first-order scheme (ref. 3). 

NUMERICAL SOLUTION 

We wish to solve a set of difference equations of the form 

with values of + or +g prescribed on the appropriate boundaries of D. 
Here aj and cj are constants, and bj and dj depend on the +’s indicated. 
The full equation is given in the appendix. Wherever +g is required, we 
also give + at the corresponding q, one f mesh point outside the domain. 
To calculate the values of I,IJ along f -1= -8$ ’” ,  we resort to the 
method of characteristics. This insures that no signal is reflected from 
that boundary and that the reflected wave is unaffected by the boundary’s 
presence. The set of nonlinear algebraic equations is solved by iteration 
for a fixed 5, starting with an initial “guess” for the solution. With an 
initial guess for the solution +iyj we proceed to calculate +?A, j ,  +‘2dr+l, , 
. . . +!$!j by solving the 2 1 -  lil equations (4) for $11) at each succes- 
sive 5 mesh point. Newton’s method is employed to solve the nonlinear 
algebraic equations. For each i we compute the tridiagonal matrix 

and solve the matrix equation 

where Xk is the transpose of the vector ( + i ,  - N ,  . . ., +i, j, . . . , $i, N-lil) 

for the new estimate X;+1. This procedure is continued until conver- 
gence is obtained or a prescribed number of revised estimates have 
been computed. The values of +i,, are then updated for that i, and equa- 



FINITE DIFFERENCE CALCULATION 365 
tions (4) are solved for $ i + , , j .  This procedure continues until new values 
have been computed for the whole domain. Then the procedure is re- 
peated, starting as before at i=-A’, until convergence is obtained. 

Filippov (ref. 6) has shown that convergence is assured for the linear 
equation (2) and a similar numerical procedure (Gauss-Seidel). Here, of 
course, we assume convergence and rely on our numerical results to 
confirm our assumption. Whether or not convergence is obtained de- 
pends upon the accuracy of the initial guess. We compute the solution 
for small p using the linear solution for our initial guess. For larger p, we 
rely on the solution for a smaller p, scaled as the linear solution would be 
with p, for our initial guess. The linear solution is evaluated from the re- 
sults given elsewhere in these proceedings; the incoming signal we have 
chosen is described there as well.3 Various criteria could be used to 
determine whether convergence was obtained. Residuals at  each mesh 
point corresponding to the equation (1) and to 

were computed and were available to judge the accuracy of the results. 
But program termination was usually made on the intuitive judgment of 
the operator. If necessary, the program was restarted and further itera- 
tions computed. 

RESULTS 

We have computed results for incoming signal strengths p ranging 
from 0.05 to 0.30. The signal is the discontinuity with strength 

and length 6=5.0.4 The computer output is both digjtal and graphical. 
The graphical output consists of computer-drawn characteristics and 
plots of $6 E u versus ( for fixed q. Because of the finite mesh size, the 
signal originates with a finite thickness; “dissipation” proportional to the 
( mesh size further smears the signal. The computer-drawn character- 
istics are used to sketch the solution in the (, q-plane; computer-drawn 
$6 curves are used directly. Figure 3 depicts the characteristics, sonic 
line, and incoming and reflected wave for p=O.lO, 0.20,0.25, and 0.30. 
The finite width of the incoming signal is indicated by the shading. In the 
reflected wave the locus of the maximum of$(( is indicated by the dashed 
line. In figure 3(b) we see that the disturbance is so large for p=0.20 that 
it encroaches upon the boundary supplying the initial data. Consequently, 

3 See p. 87. 
4 See p. 87. 
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we shifted the location of the incoming signal for values of p 2 0.20. The 
shifted results for p = 0.20 are shown in figure 3(c). There is no important 
difference between the two results. These shifted results were used in 
the graphs of +t(=u) versus [ shown in figure 4. All results were com- 
puted for N = 5 0  (i.e., 1006 mesh points). 

The computations were carried out on an IBM 360/44. Initially the 
number N was taken to be 25. Each calculation of the solution with N =  25 
takes 2 to 4 sec. The solution was iterated several hundred times until 
convergence was achieved. The number N was then doubled. With 
N =  50,  each iterate takes 8 to 16 sec. Again, several hundred iterates are 
needed io ac;l;eve cuiirei.geilce. TVI:-L ._ - n Qn 

required. For this reason and because of the large distortion of the sonic 
line, larger values of p were not attempted. For small values of p,  the 
first-order error in the difference scheme overrides any nonlinearities. 
For values of p of practical interest, this error is not as important; how- 
ever, to obtain a clear definition of the incident and reflected waves 
would require a much finer mesh near the wave. Such a calculation could 
be carried out in reasonable computer time on any of the large machines 
now available. Our course, however, will be to refine the difference 
scheme further until more satisfactory results are obtained before pro- 
ceeding with more extensive numerical calculations. 

-..+ c n n  :t,..c,t.-..c ..,_ w 1111 p- V . J V ,  abvur 0"V IIL.al;V1lJ ..GAG 

rl 
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FIGURE 3.-Characteristics, sonic line, and incident and reflected waves for signal of 

strength p .  (a) p = O . l O .  
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FIGURE 4.-Computer-drawn graphs of $c=u as functions of .$ for fixed values of T). 

(a) p = O . l O .  
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FIGURE 4 (concluded). - (c) p = 0.30. 

APPENDIX 

The basic difference equation for the nth iterate +i:j is 

- 2  
+ 

[*j ( * j + 1 +  *j) 

for 

where 
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The Accuracy of the Landau-Whitham Shock Strength Rule 
in Some Near-Field Situations 

A. R. GEORGE AND W. K. VAN MOORHEM 
Cornell University 

The unsteady reflection of weak waves from an arbitrary strength plane 
shock has been described in reference 1. This paper presents a simple 
extension of these results to nonplanar shocks. Of particular interest are 
cylindrical shocks, like those that occur in an equivalence plane model 
(ref. 2) for near-field sonic boom phenomena. It is necessary to make use 
of the equivalence plane because the investigation of reference 1 was 
carried out only for two-dimensional unsteady waves. The actual exten- 
sion to three-dimensional steady problems appears to be relatively 
simple, but has not yet been carried out. 

The interaction o i  a plane shock with two-dimensional weak waves of 
the progressing type (refs. 3 and 4) may be treated in full; however, for 
nonplanar shocks it is necessary to follow the wavefront using geo- 
metrical acoustics preceding and subsequent to the interaction. The 
use of geometrical acoustics in these cases then limits the results to the 
lowest order term in a progressing wave. The equivalence plane model 
does, however, yield an assessment of the accuracy of the one-dimensional 
Landau-Whitham theory for determining shock strength. The straight- 
forward application of the Landau-Whitham result would just add the 
pressure change of the perturbation to the pressure jump across the 
shock. In these two-dimensional cases, significant errors are found when 
waves are incident on the shock rather obliquely. 

The interaction of a conical flow field with a two-dimensional region is 
also considered. Of special interest here is the conical field produced at a 
wingtip. In this case the field produced is too strong to be considered in 
entirety; however, by limiting consideration to a region very near the 
Mach cvlie, thc method of reference 1 may be applied. 

The problem considered in reference 1 (see fig. 1) is that of a weak 
cylindrical wave incident from behind on a plane shock of initially con- 
stant strength. The shock is of arbitrary Mach number, and the wave may 
originate from a uniformly moving source (subsonic with respect to the 
flow behind the shock). Particular problems of this type have been inves- 
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FIGURE 1.-Cylindrical waves from a moving source incident on a plane shock (ref. 1). 

tigated by Freeman (refs. 5 and 6), Johnson and Laporte (ref. 7), Kovitz 
and Briscoe (ref. 8), and others, all of whom found that for their particu- 
lar problems, the shock decayed as tP3ir.  Experimental studies have been 
made by Lapworth (ref. 9), Briscoe and Kovitz (ref. lo), and Bowman 
(ref. 11), all of whom verified the t-”? decay, except for Bowman, who 
found a t-”? decay. Reference 1 undertook to study the general problem 
of cylindrical waves incident on a planar shock to obtain a fundamental 
understanding of the problem and the varying experimental results. 

The problem was formulated by considering small perturbations to the 
uniform flow behind the shock, with the flow equations reduced to the 
simple wave equation 

p - Y t t  - u - W P  

for perturbation pressure in coordinates moving with the unperturbed 
flow behind the shock. By then using a Lorentz transformation of coordi- 
nates in a manner similar to that described by Sears (ref. 12), with 

x, + VsT 
P S  

I 
X I =  



THE LANDAU-WHITHAM SHOCK STRENGTH RULE 375 

where VS is the source velocity in the flow-fixed ( x l ,  yl )  coordinates 
and PS=V‘=, the source becomes stationary, while the wave 
equation is unchanged. In these Lorentz coordinates, a two-dimensional 
progressing wave is of the form 

where 

G(81)=sin m e l  or cos me1 m=O,  1 ,  2, * 

withfo(aT1 - R1) arbitrary and R1= 

(aT1 --R1)/RI 4 1, that is, close to the wavefront. 

nates, shock-fixed coordinates being most convenient, yielding 

2. This is a valid solution for 

This incident wave may then be transformed back to physical coordi- 

where 

) 
x -  ( U +  Vs) t  

{ [ x -  ( U +  Vs)t]”P;y}1/’ e, = (- 
and Ii is the flow velocity behind the fixed shock. Now, it is necessary 
that the pressure at the shock satisfy a boundary condition obtained in a 
manner similar to that of Ting and Ludloff (ref. 13). The incident wave 
alone fails to satisfy this boundary condition, and a reflected wave is 
necessary. The phase variable for the reflected w a v e  is easily determined 
through use of a Lorentz-Galilean transformation, 

x = p x  
y= Y 
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U T - - X  

P 
(1 

t =  

where P= Vl - U2/a2.  This transformation of coordinates results in a 
simple wave equation and a stationary shock in the ( X ,  Y)-coordinates, 
with the incoming wave reflecting spectrally from the shock. Thus, with 
lines of constant phase for the incident wave given by 

the lines of constant phase for the reflected wave are obtained by replac- 
ing X by - X  and are given as 

+ P;Yl I' uvs X+ ( U + V s ) T  a T + - X  a V s  ( X , U T ) - d (  ' + F )  U 

P +- ~ P a 
= const 

A progressing wave may then be found with this relation as the phase 
variable. The incident and reflected waves together are found to satisfy 
the shock boundary condition for particular choices of the amplitude and 
phase functions of the reflected waves. The reflected wave may then be 
written in shock-fixed coordinates as 

where 
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M-1.0 

I 

FIGURE 2.-The reflection coefficient for 
plane waves for shock Mach numbers 
of 1.1, 1.5, 10, and 03 as a function of 
incidence angle. 

FIGURE 3.-The reflection coefficient for 
plane waves as M+ 1 as a function of 
incidence angle. 

and 

F(8R)  =- 

- (1 +%) cos eH) (1  +a2-- a 

with A ( M )  = (M2+ l ) / W  and M =  Vx/ax, the shock Mach number. 
It must be noted at this point that both 0, and OR are not physical 

angles, but rather anglelike variables describing a fixed point on a wave- 
front. The function F (&) is the reflection coefficient, the ratio of reflected 
to incident wave amplitude, found by Moore (ref. 14) ir. his icvestigation 
of plane-wave reflection from a plane shock, but here is expressed in 
terms of OR rather than the incidence angle Bi. See figures 2 and 3 for 
a plot of F(0i) as  a function of incidence angle. Thus it can be seen 
that, to lowest order in l/p, a cylindrical wave reflects locally from the 
shock with the amplitude of a plane wave. The higher order terms, 
however, do not follow this simpie resuit. The iocai angles of incidence 
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FIGURE 4.-The reflected wave angle as a function of incidence angle for Mach numbers 
of 1.1,  1.5, and m. At the critical value, both incident and reflected wave angles are equal. 

and reflection for cylindrical waves are also found to be the same as for 
plane waves and are plotted in figure 4 for several Mach numbers. 

Just as in the plane-wave case of Moore, a critical angle of incidence 
is found for which the wave can no longer catch the shock; i.e., the 
maximum angle for which energy is propagated toward the shock. In 
geometrical acoustics (ref. 15), energy is found to be propagated in the 
direction given by U+an,  where n is the normal to the wavefront, U 
is the flow velocity, and a is the speed of sound. Therefore, when the 
angle between the shock and wave is t 9 c c r = ~ ~ ~ ~ 1  Ula (fig. 5), energy is 
no longer propagated toward the wave but parallel to it. This, then, is 
the limiting angle of incidence for which waves can be said to be incident 
upon the shock. 

For plane waves incident at this critical angle, the reflection is found 
to be superimposed directly upon the incident wave (fig. 4) and com- 
pletely cancels it for all finite Mach numbers. The reflection coefficient 
of - 1 in figures 2 and 3 is indicative of this cancellation. The same 
phenomenon occurs for cylindrical waves, except that only the lowest 
order terms cancel, and pressure at the shock is then a result of the 
higher order terms. This cancellation is the source of the t-:’I2 decay 
discussed previously. For infinite Mach number shocks, the cancellation 1 
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2 SHOCK 

FIGURE 5. -At the critical angle, energy propag....on velocity U + an is parallel to the shock. 

does not occur, the reflection coefficient going to 1 as 8i goes to 8,,, 
and t - ' I2  decay is present. This had been noted by Freeman (ref. 5) and 
is also found in reference 16. It appears, therefore, that the previous in- 
vestigations must have included only waves that always intersected the 
shock at the critical angle. It is easily shown that a cylindrical wave 
emitted when a planar shock passes over the wave source will always 
intersect the unperturbed shock at the critical angle. A wave emitted 
at a later time will intersect first at a zero incidence angle, then with an 
increasing angle, asymptotically going to the critical angle. 

As has been previously mentioned, since thin weak waves will re- 
flect from a nonplanar shock, to first order, in a locally plane manner 
and by following the propagation of the waves in the flow field behind a 
shock by geometrical acoustics, the interaction of the wave  and shock 
may be computed. Using this technique, two cases have been computed 
graphically. Both cases are for diverging cylindrical shocks of Mach 
number 1.5 with a linear variation of flow velocity behind the shock. 

In the first case (fig. 6), the wave is emitted at a point behind the 
shock. Here the incidence angle of the wave is always small, and the 
reflection coefficient given in the figure never varies significantly from the 
value of zero given by Landau-Whitham theory, even for this relatively 
strong shock. In the second case (fig. 7), however, the wave is emitted 
at the time of shock passage. Thus, the wave is initially at the critical 
angle but moves away from it because of the cylindrical geometry. In 
the regions of the shock where the wave intersected near the critical 
angle, the Landau-Whitham rule is found to be significantly in error. 
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FIGURE 6. -Successive positions and reflection coefficients for a cylindrical wave emitted 
behind a Mach number 1.5 cylindrical shock. 

+ 
FIGURE 7. -Successive positions and reflection coefficients for a cylindrical wave emitted ' 

at a Mach number 1.5 shock. 
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This technique would allow investigation in the equivalence plane 
of an initially plane expansion wave moving in a diverging conical flow 
field, similar to the problem investigated by Oswatitsch and Sun (ref. 17). 
They are interested in the effects on the shock of the nominally plane ex- 
pansion originating at the straight trailing edge of a delta wing with 
constant lift distribution. As the expansion propagates through the non- 
uniform conical flow field, the geometrical acoustics expression for ray 
velocity U + an shows that the initially plane fronts will become convex 
and weaker as the ray-tube areas increase. This is sketched in figure 8. 
This will occur even for the ray tube associated with the bicharacteristic 
propagating directly below the aircraft. Thus this effect will weaken 
the expansion below its “two-dimensional” value and will have to be 
taken into account in calculating the shock strength after its intersection 
with this expansion. Related effects will occur for the tip and “two- 

CENTER OF 

FIGURE 8.-Sketch of spreading of rays for an initially plane wave moving in a conical 
flow fieid. 

~~ 
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dimensional" expansion in the flow field of the rectangular wing, as 
discussed by Davis.' 

The interaction of conical fields and planar shocks can be investigated 
by the method of reference 1. The limitation to that portion of the field 
near the Mach cone where the disturbance is weak has been previously 
discussed. A second difficulty is the fact that conical flows in general can- 
not be expanded to all orders as outgoing progressing waves. However, 
considerable information can be obtained because the point of interest in 
these problems is the intersection of the Mach cone and shock where a 
singularity occurs. This singularity appears in the lowest order term of 
the progressing wave and, therefore, can be treated even if the entire 
field cannot. 

In the equivalence plane, the conical field at a wingtip is generated 
at the same time as the shock, and the Mach cone will, therefore, always 
intersect the shock at the critical angle. A s  has been discussed, cy- 
lindrical waves intersecting a shock at the critical angle will generate a 
reflection that will cancel the lowest order term in the incident wave. 
This effect is shown by the reflection coefficients in figure 9. Thus for 
conical flows it is expected that the singularity will be canceled by its 
reflection. This cancellation has been observed previously for conical 
flows by Freeman (ref. 5). 

wingtip waves moving into it, such as sketched in figure 9, can only 
A two-dimensional region bounded by a plane shock and conical I I 

I 

I 

F(Bi)=-l.O -0.57 -0.015 I 

1 
WING 

_ _ _ -  

FIGURE 9.-Reflection coefficient for waves from a wingtip of a 10" half-angle wedge at 
Mach number 3 in the equivalence plane. 

~ 

' Seep .  219. 
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exist for a finite length of time before the expanding waves fill the region. 
From figure 10 it can be seen that, with the shock moving out with velocity 
V ,  and the shock wave front intersection moving along the shock at 
velocity pa, the trajectory of the intersection is given by 

_ _ _ -  dY- pa 
dx V ,  

For a constant strength shock, and a wing semispan of b/2 ,  the two- 
dimensional region extends a distance from the wing of 

b V ,  1 
y=--- 

2 a P  

Thus for a rectangular wing, the two-dimensional region will not extend 
into the far field. 

Several important effects in the near field for honk boom problems 
have been discussed. The Landau-Whitham rule of simple pressure ad- 
dition was seen to fail locally when waves reaching a shock are near the 
critical angle to it. The singularity occurring at the intersection of a 
conical flow field and a shock was shown to be canceled by reflected 
waves from the shock for finite Mach number shocks. However, the 
higher order terms necessary to determine the behavior at this point were 
not found by this technique. The propagation of waves through a non- 
uniform region before reaching a shock has been shown to affect the 
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On the Extrapolation of Measured Near-Field Pressure 
Signatures of Unconventional Configurations 

JOEL P. MENDOZA AND RAYMOND M. HICKS 
NASA Ames Research Center 

The Whitham theory (ref. 1) accurately predicts the sonic boom 
characteristics of some configurations and fails to predict with the same 
degree of accuracy the sonic boom characteristics of other configurations. 
Nose bluntness, large values of lift, and large Mach number have been 
shown (refs. 2 to 6) to have adverse effects on the prediction of sonic 
boom characteristics. A technique (ref. 7) of extrapolating measured 
near-field overpressure data from one altitude to larger altitudes has 
been shown (ref. 8) to circumvent many of the weaknesses of the Whitham 
theory. A number of cases will be presented in this paper for which the 
Whitham theory either is not applicable or yields results that differ 
widely from the measured data. The extrapolation technique will be 
shown to be quite accurate in predicting the sonic boom characteristics 
of these cases. 

DISCUSSION 

A sketch of the different configurations studied in this paper are 
presented in figure 1. Overpressure data were measured at the Ames 
Research Center on the 6.48" cone-cylinder model and the two models 
of the straight-wing and delta-wing orbiters. Overpressure data on the 
wingbody and the two wingalone models were obtained from references 
6 and 9. 

For each model, overpressure characteristics measured at  some given 
altitude are extrapolated and compared to overpressure characteristics 
measured at a higher altitude. In cases for which the Whitham theory is 
considered applicable, a theoretical pressure signature is shown with 
the extrapolated and measured data. 

The measured and predicted overpressure characteristics of the 6.48" 
cone cylinder at the Mach number of 1.68 are shown in figure 2. At the 
altitude of 20 cone lengths, the extrapolated pressure signature as well 
as the pressure signature computed by the Whitham theory are shown 
to agree quite well with the measured pressure signature. Because of the 
axisymmetric formulation of the theory, the excellent agreement shown is 
not too surprising. 
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- 
FIGURE 1. -Configurations used in wind-tunnel sonic boom tests. 
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FIGURE 2. - Flow-field pressures of a cone cylinder. 

Comparisons made between the measured and extrapolated pressure 
signatures at  the Mach number of 2.01 are shown in figures 3 and 4 
for wings with an aspect ratio of 1/2 and 2, respectively. The over- 
pressure data were measured on a boundary layer bypass plate that was 
assumed to have a reflection factor of 2.0. For the wing with an aspect 
ratio of 1/2, it is noted that the measured and extrapolated data agree 
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quite well at the altitude of eight chord lengths. Here the flow field was 
considered to become axisymmetric a short distance from the chord plane 
of the wing. In contrast, the wing with an aspect ratio of 2 was expected 
to retain its two-dimensional flow-field characteristics at a larger distance 
from the wing plane than the previous model. It is noted that pressure 
signatures extrapolated from signatures measured at successively in- 
creasing distances from the model exhibited successively improved 
correlations with the data measured at the altitude of 16 chord lengths. 

Measured and predicted pressure signatures for a wing-body model 
at a Mach number of 4.63 are shown in figure 5 for two lift coefficients. 
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FIGURE 5. - Flow-field pressure of a wing-body model at a high supersonic Mach number. 

At zero lift coefficient, both the extrapolated data and the theoretical 
pressure signature agree fairly well with the measured data at the altitude 
of four body lengths. At the lift coefficient of 0.09, however, theory 
predicts a longer pressure signature length. The extrapolated pressure 
signature agrees more closely with the measured data than theory does 
at the altitude of four body lengths. 

The excellent correlations shown between the measured and extrapo- 
lated sonic boom characteristics of the models discussed up to this point 
might be attributed principally to the weak shocks they produce. How- 
ever, it was discovered that the sonic boom characteristics of configura- 
tions producing strong shocks could be accurately predicted by the 
extrapolation technique. An example of such a configuration is shown in 
the shadowgraph (fig. 6) of a straight-wing orbiter at a Mach number of 
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FIGURE 6.-Shadowgraph of the model of the straight-wing orbiter, M = 2 . 7  and a=60°. 

2.7 and at an angle of attack of 60". It is noted that a strong bow shock is 
produced by this model. An embedded rear shock is observed forming 
at a point some distance from the rear of the model. Quite clearly the 
flow-field characteristics of this model cannot be adequately described 
by small-disturbance theory. 

The measured and extrapolated pressure signatures of the straight- 
wing and delta-wing orbiters at a Mach number of 2.7 and an angle of 
attack of 60" are shown in figures 7 and 8, respectively. At the higher 
altitudes, where only the positive portions of the pressure signatures 
were measured, excellent agreement is shown between the measured and 
extrapolated overpressure characteristics. 

To determine the sonic boom levels on the ground produced by each 
of the two full-scale space shuttles flying their respective 60" angle-of- 
attack mission profiles, additional pressure signatures for the two models 
each at the angle of attack of 60" were measured at Mach numbers of 
1.68 and 2.17. Presented in figure 9 are the predicted sonic boom leveis 
on the ground produced by each of the two space shuttles. Included in the 
calculations of the sonic boom levels are the effects of some of the flight 
parameters such as flightpath angle, the time rate of change of the 
flightpath angle, and deceleration. The noted decrease in sonic boom 
leve!s with increasing Mach number is mainly an effect of altitude. 
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FIGURE 7. - Flow-field pressures of a straight-wing orbiter, a = 60" 
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their respective 60" mission profiles. 

CONCLUSION 

The extrapolation technique has been shown to accurately predict the 
sonic boom characteristics of the different configurations studied herein. 
Application of the extrapolation technique to overpressure data measured 
at Mach numbers as large as 4.63 may be made with some measure of 
confidence. Sonic boom levels of configurations producing strong shocks 
may be accurately estimated. 
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Some Notes on the Present Status of Sonic Boom Prediction 
and Minimization Research 

HARRY W. CARLSON 
NASA Langley Research Center 

GENERATION AND PROPAGATION 

In the field of research dealing with the study of sonic boom genera- 
tion and propagation, much has been accomplished since the first booms 
were generated by research and military aircraft shortly after World 
War 11. There is now a general understanding of the way in which an 
airplane’s shape, size, and operating conditions affect the generation of 
the boom and of the way in which flightpath variations and atmospheric 
conditions affect the propagation. Expected nominal overpressures may 
be predicted with reasonable accuracy through the use of current theo- 
retical techniques, and the effects of atmospheric nonuniformities and 
turbulence may be estimated on the basis of statistical data from flight- 
test programs. Generally, there is far less uncertainty in the prediction of 
overpressure levels than there is in the prediction of the effect of these 
levels on people, animals, and structures. 

Wind-tunnel and ballistic-range experimental programs have permitted 
detailed studies under controlled conditions of the generation and propa- 
gation of sonic boom pressure fields for a variety of basic shapes and 
typical airplane configurations. This work has been invaluable in the 
verification of the basic Hayes-Whitham theoretical treatment and in 
the development and refinement of computer-implemented prediction 
techniques. Other laboratory studies have provided a knowledge of the 
effects of atmospheric nonuniformities and turbulence and of the be- 
havior of pressure signals at a focus. 

In the assessment of the influence of airplane operational factors and 
atmospheric properties on sonic boom generation and propagation, the 
importance of flight-test programs cannot be overemphasized. These 
tests have provided an impressive amount of high-quality data, which has 
been of great value in the verification of theoretical methods for the 
prediction of nominal overpressures and in the estimation from a statis- 
tical standpoint of the modifying influence of unpredictable atmospheric 
nnnllniform!tles. . .  
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The latest in the series of these flight tests, reported at this conference! 
has yielded information directly applicable to the feasibility of overland 
operation of supersonic transports (SST’s) at slightly greater than sound 
speed to prevent the boom from reaching the ground. Although such 
operation appears to be feasible and could be used to improve the 
utilization of the SST on the overland portion of worldwide route struc- 
tures, there is little evidence from an engineering and economic feasibility 
viewpoint to justify transport design directed specfically toward sus- 
tained operation at transonic speeds. 

Ccmmur?ity everflight teqt programs such as those conducted at 
St. Louis and Oklahoma City have led to a much improved understanding 
of the impact of the boom on community life and resulting public reac- 
tion. Yet there is still no way of establishing tolerable levels of the boom 
nor of relating public reaction to boom levels in such a way as to permit 
meaningful extrapolation to routine long-term airline operation of 
SST’s. It is hoped that experience with the Anglo-French Concorde will 
provide additional information relative to establishment of a rational 
basis for limitation of public exposure to sonic booms. 

Looking ahead, there is clearly a need to resolve the difficulties 
associated with the analytic treatment of the caustic and atmospheric 
turbulence. Prediction of these effects may well continue to be treated 
statistically; however, a fundamental understanding of the relative 
importance of the factors involved is essential in the interpretation of 1 
data obtained in specific tests and extension of the results to aircraft 1 

operation under conditions far different from those encountered in the 1 
tests. Of even greater importance is the need for a broad-based explora- I 
tion of sonic boom phenomena at hypersonic speeds. This work will 1 
entail wind-tunnel and laboratory experimentation and may require the 
development of new analytic techniques. Flight tests would become an 
important part of the research program as hypersonic research air- 
craft become available. I 

Many other present and proposed research efforts, however, are 
concerned with what must be regarded as details in the overall picture. 
Because of the relatively advanced state of knowledge of sonic boom 
generation and propagation, caution must be exercised in the selection 
of new research programs. Each of us who proposes new work or is 
called upon to review proposals should address himself to the following 
questions: 

(1) Are the factors to be explored significant; is there a real need 

I 

for the work? 

’ See p. 243. 
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(2) Will the proposed work be original and not simply a repetition 

of work already covered in the rapidly expanding volume of 

(3) Is the approach technically sound; can it withstand the scrutiny 
I literature? 

of recognized authorities? 

MINIMIZATION 

The search for airplane shaping concepts to minimize the sonic boom 
pressure field disturbance has been actively carried on for almost a 
decade. The earlier work, aimed at reduction of signature impulse and 
far-field shock strength, was found to be severely limited in practical 
application. At best, a sonic boom optimized design could be expected to 
have only a 10- to 15-percent reduction of shock strength relative to a 
comparable design that ignored boom considerations. Techniques for 
boom minimization based on the attainment of near-field signatures as 
pioneered by McLean and extended by Seebass permit a greater degree 
of minimization provided that shock strength or peak overpressure rather 
than signature impulse is the governing factor. These later techniques 
have been shown to offer practical benefits for the transonic speed range, 
but there remains some question of their effectiveness for SST cruise 
conditions, at least for the present status of aerodynamic, propulsion, and 
structural weight technology. 

It has become very clear in NASA and industry studies that the prnb- 
lem of sonic boom minimization through airplane shaping is inseparable 
from the problems of optimization of aerodynamic efficiency, propulsion 
efficiency, and structural weight. Substantial improvement in any of 
these other factors would have a direct beneficial influence on sonic 
boom minimization. Airplane shaping based on sonic boom considera- 
tions alone, however, does not necessarily bring about improvement in 
the other factors. In fact, if great care is not taken in the application of 
sonic boom design principles, the whole purpose can be defeated by 
performance degradation, weight penalties, and a myriad of other prac- 
tical considerations that arise in the airplane design process. These 
thoughts are intended not to discourage the application of sonic boom 
design principles but to point out the need for consideration of all aspects 
of the minimization problem in order to assess the true potential of any 
minimization scheme. 

A case in point is uffe~eci by a review of the NASA-FAA Domestic 
SST Study. Following McLean's original discovery of extended near- 
field effects in 1964, an analysis of hypothetical airplane equivalent body 
area distributions indicated that there was some possibility of generating 
near-field signatures with maximum overpressures less than 1.0 lb/ft' 
for the entire mission of a Mach 2.7, 200-passenger SST with a range of 
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2500 n. mi. Subsequent studies by NASA indicated that the original 
overpressure estimate would have to be revised to about 1.2 to 1.3 lb/ft2 
because of consideration of a more realistic atmosphere model than the 
geometric mean previously used and because practical configuration 
arrangements that fully corresponded to the original hypothetical area 
distribution were not possible. Working under contract to FAA, North 
American Aviation, Inc., performed a feasibility study in which the NASA 
design concepts were retained and an attempt was made to develop an 
economically sound airplane for scheduled airline operation on domestic 
coast-to-coast routes. Some design compromises were found to be 
necessary, ariu irie oilgmal weight estimates were ~GIXX! ?G be cver!y 
optimistic, the net result being that peak overpressures in the region 
of 1.4 to 1.5 lb/ft2 were estimated at the conclusion of the study. Although 
these levels represented a considerable improvement compared to the 
booms to be expected from the larger intercontinental SST, there was 
no assurance that they would be acceptable for routine overland opera- 
tions, and little further work was done. There is no evidence that within 
the constraints of present aerodynamic, propulsion, and structural weight 
technology, appreciably better sonic boom levels could be attained. A 
breakthrough in any one of these constraining technologies or an ac- 
cumulation of benefits from several areas would, however, warrant a 
reexamination of the situation. 

Extreme examples of near-field signatures that might offer sonic boom 
benefits are those that have finite rise times. It is generally conceded1 
that the noise associated with sonic boom is considerably diminished by 
rise times that may be only a small fraction of the signature duration. 

achievement in practice of such signatures. The required airplane 1 
lengths in the application of airplane shaping techniques appear to bel 
prohibitive, and the application of phantom-body or heat-field concepts, 
while worthy of further consideration, must be admitted to present 
severe, if not unsurmountable, problems of practical irnplementation.1 

There is some possibility that an ultimate solution to the sonic boom 
problem may be found in the development of a practical hypersonic 
transport, a possibility that should be vigorously explored. For instance,, 
it is estimated that a hypersonic transport designed with no considera- 
tion of sonic boom minimization would produce overpressure levels 
of about 1 lb/ftz for operation at Mach numbers in the 6 to 8 range and 
corresponding cruise altitudes in excess of 100 000 ft. Overpressure 
levels decrease further with increasing speed, and, of course, at orbital 
speed there should be no perceptible boom. All such high-speed vehicles; 
however, must travel at transonic and moderate supersonic speeds for 
portions of the mission during which relatively intense booms would be 
generated. Thus the sonic boom problem cannot be completely avoided. 

. .  1 1  

At present, however, there is only a remote possibility for the planned1 1 
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The multitude of problems associated with the development of aircraft 
for operation in this hostile environment cannot be discounted, but the 
potential benefit of efficient long-range transportation not appreciably 
restricted by boom considerations makes the solution of the problems 
a worthy goal. In this connection it is evident that there is a need for 
improved understanding of hypersonic boom phenomena and a need 
for the development of prediction and minimization techniques. 

The attention of many talented researchers has been devoted to this 
most difficult endeavor of finding a completely acceptable solution to 
the sonic boom problem. As of now, there is no approach, even on the 
far horizon, to offer much hope for full achievement of that goal. The 
search must continue. In this search w e  must be aware of the danger of 
too great an assurance in our assumptions of what cannot be done (until 
tried) and must be alert to new possibilities, particularly those that may 
originate in presumably unrelated disciplines. 

I 



are presently accepted; however, they have not been confirmed by any 
experiments. The analysis involves several approximations, and it is 
worthwhile mentioning the consequences of such approximations. 

First, the airplane is represented as an equivalent area distribution. 
In the definition of the equivalent area, three-dimensional effects are 
neglected; in addition, if standard analysis is used, linear theory is 
utilized in relating cross-sectional area volume and lift. This second 
approximation can be eliminated by taking into account second-order 
effects in determining the overpressure corresponding to lift. Therefore, 
when a given equivalent area distribution is defined and the end value 
of the equivalent area distribution corresponds to the weight of the air- 
plane within the higher order theories, then such signatures will cor- 
respond to an airplane that has the correct lift and the correct length 
even when the other approximations are eliminated; however, the rela- 
tion between the geometry and the area distribution will be different 
from that obtained with linear theory. The second approximation is in the 
propagation of the wave. If higher order terms are considered in the 
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analysis, the wave propagation in the vicinity of the airplane will change. 
Such changes will affect the position and origin of each wave carrying a 
given disturbance that produces the sonic boom signature. It therefore 
will change the airplane configuration corresponding to a given signature. 
At present the importance of such approximations is investigated by mak- 
ing experiments in wind tunnels and determining the sonic boom cor- 
responding to a given geometry and given lift at some distance from the 
airplane. This type of investigation should permit changing the airplane 
configuration to take into account the higher order effects in order to 
have the predicted signature. While the basic approach is sound, 
experiments! errcrs that are difficnlt to avoid can affect substantially the 
conclusions of these types of investigations. Nonuniformities that exist 
in all wind tunnels can introduce errors that are important for the sonic 
boom measurements when the intensity to be measured is small. In 
addition, model support and local flow separations due to the low 
Reynolds numbers of the tests can introduce substantial effects on the 
results. If experimental techniques are to be used, the importance of 
such errors should be recognized and evaluated carefully in each test. 

I strongly recommend that a research program be organized and di- 
rected toward this purpose. Such a program cannot presently be carried 
on as a side effort of other research programs because it requires careful 
and detailed measurements of very small quantities. 

The analysis presented indicates that a decrease in vehicle weight, 
flight altitude, and Mach number and an increase of dimensions can 
change substantially the sonic boom. Some work should be directed 
toward determining possible practical limitations or variations of such 
parameters. 

Hypersonic flights are predicated on the possibility of longer range; 
flights; therefore, the possibility of overland flights is important for hyper-] 
sonic vehicle design. The effect of increasing the Mach number fori 
supersonic airplanes should be investigated from the point of view of1 
sonic boom generation. In this field many of the existing linear theories, 
are not satisfactory. At the same time, careful investigations of hyper- 
sonic vehicles will probably indicate that the preliminary conclusions 
obtained indicating high sonic boom signature from oversimplified 
analyses are not necessarily correct. Because the weight of the airplane 
is an important parameter, some effort should be directed toward the 
investigation of the possible changes of engine fuel used and reductio 
of consumption of fuel, weight, and structural weight. When all of thid 
information is available, it will be possible then to have a clear idea oi 
what direction should be taken and what the real possibilities are fol 
the next generation of supersonic airplanes. 

1 



Comments on Near-Field Effects 

M. B. FRIEDMAN 
Columbia University 

It is not yet clear that major reductions in boom overpressures can 
be achieved by realizable modifications of aerodynamic configurations 
such as changes in planform, sweep, dihedral, redistribution of lift, etc. 
However, the theoretical and experimental research to  date does in- 
dicate that some significant reductions can be obtained by varying these 
features. Even limited improvements may be of value in certain cases 
because of the amplification effect of focusing. 

The difficulties encountered in determining the influence of changes 
in configuration are due to the limitations of both theoretical and ex- 
perimental techniques presently available. Wind-tunnel experiments. 
by their nature, provide primarily near-field data which are then extrapo- 
lated into the far field through the F-function approach. But from the 
theoretical point of view, the near-field behavior for many configurations 
is not well modeled by F-functions. Consequently, although the overall 
decay character of the far field is approximated by their use, the in- 
fluence of configuration asymmetries, etc., on the shocks and particularly 
on the signatures is not accounted for propdy.  Theoretical analysis 
might establish the extent of the near field and indicate where the F- 
function extrapolation can begin. In fact, the limited theoretical results 
available indicate that this is dependent upon the geometry of the con- 
figuration. But except for relatively simple geometries, it is not feasible 
at this time to determine the near field to predict the region beyond which 
F-functions may be properly employed. Thus it is difficult to assess 
the true influence of configuration changes. 

A successful evaluation of the benefits of altering geometry would 
appear to require, at the least, more extensive analytical and/or numerical 
treatment of the near field. Such theoretical knowledge of the near field 
may also be important in attempting to develop configurations that 
maintain the near-field character for some large distance as, for example, 
by delaying coalescence of wing and body shocks. Certainly, in such 
cases, extrapolation procedures must be applied with great care. Another 
possible direction for utilizing near-field behavior is to take advantage 
of the redistribution of the fe!d Srcugh: a h i t  by the strong three-&men- 
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sional effects associated with diffraction phenomena induced by wing 
geometry. The study of simple geometries indicates that the experi- 
mentally noted favorable influence of such factors as dihedral may be 
attributed to exactly such diffraction phenomena. The study of focusing 
is also strongly dependent on the behavior of the near field. The cus- 
tomary far-field approximations associated with the F-function no longer 
remain valid beyond the caustic. Several investigators have reported 
work in these proceedings that appear to represent initial efforts in these 
directions. 

1 



Comments on the Caustic Problem 

condition of continuity of velocity potential across the shock, but two 
independent conditions always remain. If an arbitrary linear solution is 
given that, on transformation, requires a shock. a shock can generally 
be fitted using one condition. In general, the other independent condition 
is not met. Thus the linear solution must satisfy a compatibility condition 
to consistently support a shock. The conclusion must be made that the 
problem is inherently nonlinear because this particular boundary con- 
dition is nonlinear. In a particular case, as in the one reported here by 

1 See p. 87. 
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Seebass, consistency in the shock conditions may be found to occur, at 
least to a high degree of accuracy. 

In the case of the region near a conical singular ray, discussed in 
these proceedings by Hayes et a1.,2 the same situation holds. There are 
two independent shock conditions, and the shock must be located as part 
of the solution in the large. 

In the standard Landau-Whitham theory for signal distortion and shock 
development, the solution is governed by an equation noted by Chand- 
rasekhar and sometimes termed the inviscid Burgers' equation. Two , 
shock conditions may be derived, one for shock speed and one for shock 

from these two. The situation is, however, different from that of the two 1 

problems discussed above. A first integral to the governing equation 

strength. A.  a ad it ion fer continnity of ve!ocjiy psiefitiii! i i i~j;  be derived ' 

may be found, actually in the form considered as a governing equation 
by Poisson. The constant in this first integral may be shown to be zero 
and thereby continuous across a shock. This result links the two shock 
conditions so that they are not independent. In this problem, as is well 
known, shocks may be fitted, when needed, to an arbitrary signal. 

It would seem, then, that a numerical solution to the caustic problem 
cannot be avoided. It would probably be worthwhile to increase the quite 
modest efforts now being made in this direction. The numerical problem 
is inherently a very difficult one, and more than one approach should be 
followed. If several approaches succeed, the ability to compare their 
results would be most valuable and would lend confidence in their 
accuracy. 
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Remarks on Nonlinear Effects 

M. LANDAHL 
Aeronautical Research Institute of Sweden 

One of the main purposes of an analysis of nonlinear effects on the 
sonic boom is to assess the accuracy of first-order theory. From compari- 
sons with the two-term expansion for large distances, one concludes 
that, for the very slender configurations of current interest, geometrical 
acoustics does indeed provide a very good approximation to the flow 
field that should hold to within a distance of very few body lengths, even 
at fairly high Mach numbers. The developed second-order solution allows 
one to get within a distance from the body of perhaps one body length. 
The usual method of determining the far field and the associated shocks 
by aid of the Whitham F-function would therefore be quite adequate, 
except that the F-function will differ from what is given by the linear 
theory by terms that are of second order in equivalent body thickness 
ratio. These may become important at Mach numbers of 3 and higher. For 
accurate sonic boom calculations, one would therefore need better 
information about the near field than that provided by linearized theory. 
S u c h  could be obtained from theory, direct numerical calculations, or 
experiments, depending on whatever method is available with sufficient 
accuracy. Judging from its success in predicting surface pressures, 
second-order theory would be quite adequate for slender configurations, 
even at quite high Mach numbers. There is not much hope of finding a 
reasonably simple second-order analytical solution for a general three- 
dimensional flow field, but the simple structure of the axisymmetric 
solution gives helpful clues as to how one should construct good ap- 
proximate ones. In the solution for axisymmetric flow, the main second- 
order effects are retained in the linear solution if the variables in this 
are transformed in such a manner that both families of characteristics 

1 are made straight. One would therefore conclude that any good approx- 
1 imate theory would need to account for the deformation of characteristic 

surfaces. 
There are other possible applications of the nonlinear solution for 

large distances that readily suggest themselves. One is to the calculation 
of correction for near-field effects of experiments in a wind tunnel aimed 
at determining the Whitham F-fiinction from measurements of the flow 
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field close to the body, as we reported.' Another use is for development 
of wind-tunnel correction formulas to account for nonuniformities in the 
flow that become very important for the kind of extremely slender 
low-boom configurations discussed by Dr. Ferri.' Correction for linear 
effects is simple, but for high Mach numbers the nonlinear effects of 
flow nonuniformity become important, and these can be worked out 
approximately from the second-order theory. 

Finally, I would like to point out a somewhat subtle distinction between 
geometrical acoustics and Whitham's theory which is important in the 
understanding of higher order effects. The former says that the pressure 
decreases along the ray with distance as the inverse of the square root of 
the stream tube area; i.e., with r. The latter in addition states something 
more, namely that the pressure (or u-perturbation velocity) is the same 
function of the downstream characteristic coordinate as  that given by 
linear theory. It is generally assumed that the characteristic variable 
value is obtained from the intercept of the curved characteristic line 
with the x-axis. However, Whitham's theory actually uses the specific 
form 

x - pr= y- kr l /*F(y )  

which is a far-field approximation adjusted so that, formally, x - p r =  y 
for r= 0. Actually the first-order far-field solution says that instead of y, 
any function of y would do; e.g., g(y), so that in general 

x - p r  = g(y) - krI/*F(y) 

with g(y)  arbitrary. There are several ways that one could choose g, the 
most reasonable way perhaps being to determine it from the true inter- 
cept (not the one predicted by the asymptotic expression) with the body 
surface. However, if one is to use the specific graphical technique usually 
employed in connection with Whitham's theory with lines of constant 
x - p r  being straight lines of slope (kr)'k2 in the F(y) diagram for each 1 
value of r ,  it is necessary that the labeling of each characteristic follow 
the Whitham formula. Thus, if one uses, for example, a graphical tech- ~ 

nique to determine the characteristic lines, it is important to select the , 
labeling of each line characteristic so as to approach that given by the 
Whitham formula for large distances. 

' See p. 285. 
See p. 255. 



Comments on Sonic Boom in a laminar Atmosphere 

HARVARD LOMAX 
NASA Ames Research Center 

As Dr. Kurzweg mentioned in his opening remarks, we have made a 
significant increase in our understanding of the control of boom over- 
pressures since the first Sonic Boom Conference held in 1967. At present 
our studies indicate that if the sonic boom were the only consideration, 
a 450000-lb, 300-ft-long airplane could fly at a Mach number of 2.6 and 
create a noise hazard no more severe than the rumble of thunder. As- 
suming this noise level to be acceptable, there remains, however, the 
very difficult task of designing an airplane with this capability that is 
also aerodynamically efficient. This difficulty is certainly not lessened by 
our present environment of limited finances- finances, which must, 
for a rational development, support experiments made both in flight 
and in wind tunnels, as well as the advancement of theoretical prediction 

Speaking for the development and exploitation of the theoretical pre- 
diction of sonic booms in a laminar atmosphere, it is clear that the 
application of the Whitham theory to the cross-sectional area and lift 
of the airplane itself is inadequate at Mach numbers around 3.0 for many 
configurations. However, it appears to be generally accepted that signa- 
tures established some distance from the body (a few body lengths) can 
be extrapolated downward in a laminar atmosphere by theories based 
on the concept introduced by Whitham. It also appears that shapes of 
these “near-body” signatures can be formulated that will give acceptable 
near-field (around 150 body lengths) pressure distributions having a 
flattened N-wave appearance. One vital question at present is: What 
are the exact details of an airplane shape that will provide an appropriate 
near-body signature? It is this aspect of the overall problem for which 
theories that make solutions uniformly valid, that include the effects of 
higher order nonlinear terms, and that make use of finite differencing 
techniques have their highest value. To develop confidence in the 
reliability of such theories, they should be applied to identical airplane- 
like configurations, simple at first and then increasingly complex. Results 
of such applications should be compared, and discrepancies explained. 

t techniques for both laminar and turbulent atmospheres. 
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This will suggest the formulation of verifying wind-tunnel experiments. 
The successful accomplishment of such a combination of tasks would 
provide a powerful design tool for producing: airplanes that would have 
acceptable sonic boom signatures. 



Comments on Sonic Boom Research 

R. SEEBASS 
Cornell University 

There is an advantage as well as a disadvantage in being the last to 
speak. The advantage accrues from previous speakers covering much 
of what needs to be said; the disadvantage is, of course, that they may 
have said everything that is worth hearing. Fortunately, they have done 
their work well and I can be brief; still, they left some important points 
to be made. 

The current budget situation dictates that we adopt a pragmatic and 
tough-minded view of sonic boom research needs. We must determine 
today, as best we can, what the future direction and scope of sonic boom 
research will be, realizing that economic constraints limit this scope 
more than we would like. Also, we should adopt the view that the first 
few generations of supersonic transport (SST) aircraft, if they are built 
at all, will be limited to supersonic operation over oceanic and polar 
regions. With this in mind, let me discuss what I believe to be the major 
questions that further research must answer. 

The superboom that occiirs when SST’s accelerate to supersonic 
speeds will usually occur in coastal waters; over a period of years, a 
significant number of vessels and their occupants will be subjected to 
them. Clearly, we must determine the nature of this superboom and be 
able to make reasonable predictions about its strength. 

With SST aircraft restrained from operations that cause a sonic boom 
to reach the territorial surface of many countries, we must determine 
whether the increased utilization and speed of slightly supersonic opera- 
tion is practical and feasible. Can we prescribe operational constraints 
that will insure that no unacceptable signals reach the ground? And 
if these conditions are violated, what are the consequences? 

The poilutarit aspect of the sonic boom has reduced the economic 
vindication of SST’s from a resounding yes to a quiet question mark. 
But if we can design later generation SST’s with truly acceptable sonic 
boom signatures, then there is no doubt that SST aircraft, as a class, will 
be economically successful. So we must know how well we can do, in 
principle and in fact, in alleviating the unacceptable feature of the over- 
pressure signature. We cannot, however, wait for the “psychoacotisti- 
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cians” to tell us how to weight signature parameters such as shock 
pressure rise, rise time, overpressure and impulse in determining sonic 
boom acceptability. Rather, we must tell them how well we can do in 
optimizing these parameters and ask the simpler question of whether 
or not any of the signatures we can achieve are likely to be acceptable. 

Our progress in the area of sonic boom reduction has been dramatic 
since Mr. McLean noted the extent of the mid field in a homogeneous 
atmosphere and Professor Hayes showed us that signature distortions 
much beyond one scale height were negligible. The more we work on the 
minimization problem, the more difficult it becomes to rule out a domestic 
SST. 

With the SST in financial trouble, we are beginning to hear more about 
a hypersonic transport (HST). For such a vehicle to make sense it must 
have a long range, and if it is to use that range effectively, it must have 
acceptable sonic boom characteristics. The sonic boom component of 
HST research seems to me to be sorely missing and in need of greater 
emphasis. 

We must continue to test sound theoretical ideas in the wind tunnel, 
both to verify our theories and to test our wind-tunnel techniques so 
that we can be sure of them even when our theories fail. But we must 
avoid wind-tunnel tests that verify the obvious. Field tests are even more 
expensive and must be limited to projects with high scientific content. 

Finally, let us not forget that one way to reduce the sonic boom is , 
to increase the overall efficiency of the aircraft. Improvements in the ‘ 
lift-to-drag ratio, the engine thrust-to-weight ratio, structural efficiency, , 
and specific fuel consumption reduce the aircraft’s sonic boom. Any 
penalties in these parameters that result from modifications that reduce 
the sonic boom must indeed be modest to be acceptable. Sonic boom 
research must continue; perhaps it should be expanded. But certainly 
such expansion must not be at the expense of research that relates 
directly to the aircraft’s performance. 
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Comments on low Sonic Boom Configuration Research 

LYNN W. HUNTON 
NASA Ames Research Center 

From results of numerous sonic boom tests of a wide range of wing- 
body configurations, it has been found that the available theoretical 
methods based on first-order theory for calculating lift and sonic boom 
(refs. 1 and 2, respectively) have limitations at moderately high Mach 
numbers (above 2) that are sufficiently restrictive to compromise to some 
extent the effectiveness of these methods for low-boom configuration 
research. As a result, basic design problems have been encountered in 
transforming an optimum area distribution for low boom to an equivalent 
lifting airplane configuration. An attempt is made here to comment on 
some of these design and testing problems as interpreted by Ames and 
to present a data sample in support of the discussion. 

One problem in the assessment of sonic boom for a given airplane 
design is centered on the calculation of the vehicle lift distribution. 
Because the lift at cruise represents perhaps 50 to 70 percent of the 
equivalent cross-sectional area of the vehicle for sonic boom calculation 
purposes, small changes in the lift distribution due to either design 
changes or problems of accuracy in the theory can lead to significant 
effects in the final overpressure results. While it is generally recognized 
that the more sophisticated methods available for calculating loads 
on wing-body combinations at supersonic speed do provide quite accurate 
estimates of gross lift effects (e.g., lift curve slope), these same methods 
(refs. 1 and 3) do not yield accurate predictions of center of pressure 
at the higher Mach numbers. Deficiencies in the calculated loadings, 
usually a rearward shift of load for swepthack wings, are found to 
increase with increase in Mach number above 2, as illustrated in figure 6 
of reference 4. Because the overpressure characteristics for low boom 
configuration concepts are generally rather sensitive to small deviations 
in the equivalent area distribution, any deficiency in loading theory can 
greatly compound the overall design problem. 

Another factor influencing the design problem of wing-body shapes 
is the failure of the slender-body expansion method of Whitham to provide 
the accurate prediction of the F-function at the higher supersonic Mach 
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FIGURE 1.-Correlation of Mach number effect for sweptback wing model. 

numbers that is required for the derivation and/or extrapolation of pres- 
sure signatures for midfield distances commensurate with flight altitudes. 
Studies conducted at Ames Research Center (also at Langley Research 
Center; see Morris' paper I )  show this problem to be significant for Mach 
numbers above about 2. The limitations of the Whitham theory (that 
includes only first-order nonlinear effects) at the higher Mach numbers 
were reviewed by both Landahl and Woodward at this conference. An 
example of the discrepancy found between theory and experiment is 
shown in figure 1 for a swept-wing model tested at two values of lift 
coefficient at Mach numbers of 1.7, 2.0, and 2.7. The wing had a 69" 
sweptback leading edge and a symmetrical double-wedge section with a 
maximum thickness ratio of 0.05. In general, it is found that the theory 
tends to underestimate the maximum shock pressures, the pressure 
impulses, and the rates of pressure expansion behind each shock. The 
data also illustrate the deficiency of the theory in predicting the location 
of intermediate shocks as they progress toward either the bow or tail 
shocks with increase in lift coefficient. The comparisons at zero lift 
serve to isolate at least a portion of the deficiency in the boom theory. 
However, for the comparisons at lift, any division of the deficiency in 
theory between loading theory and boom theory will remain in question 

' See p. 193. 
See pp. 3 and 285. 
See p. 437. 
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until pressure measurements on the model can be obtained. Attempts 
are continuing by several research teams (e.g., Landahl with his method 
of parametric differentiation as covered at this conference and in ref. 5) 
to find improved analytical solutions for both the lift and the overpressure 
characteristics at high Mach numbers. In the meantime, on the basis of 
the information at hand, it is the consensus at Ames that the present 
first-order theories are limited in scope of application somewhat more 
than has been commonly accepted and, consequently, will provide only a 
preliminary guide to the overpressure characteristics for lifting con- 
figurations at Mach numbers greater than about 2. 

The indicated lack of agreement between first-order theory and ex- 
periment can cause significant differences in the predicted boom 
characteristics at flight distance ratios. To illustrate for the case cited 
in figure 1, a comparison of the predicted overpressure ratio character- 
istics from theory and from experiment (extrapolated from wind-tunnel 
data for h / l = 3 . 1 )  is shown in figure 2 for a distance ratio of 200 body 
lengths at a Mach number of 2.7 for two values of lift coefficient. These 
extrapolated signatures represent conditions on the ground with no 
reflection amplification for the subject configuration with a length of 
300 ft cruising at a 60 OOO-ft altitude (weight of about 520 OOO lb for the 
lifting condition indicated). The percentage discrepancy in figure 2 
between theory and experiment can be seen to exceed 30 percent for 
either C,, tested. Unfortunately, this result is not unique because it has 
been found in a number of other similar analyses of theory and wind- 
tunnel results at Mach numbers above 2. The extrapolations here were 
made using the method of Thomas5 that includes real atmosphere 
effects (use of an alternative method (ref. 6) would be expected to 
provide a similar extrapolation result). Under the indicated conditions, 
the reference pressure p is the atmospheric pressure at the ground. Use 
of a uniform-atmosphere solution in the extrapolation would increase 
the discrepancy between theory and experiment. 

With regard to experimental problems in sonic boom research, it is 
essential that the techniques and assumptions used be continuously 
questioned as one requisite for assuring the maximum in reliability from 
experimental research. Professor Landah16 has suggested the role of 
second-order effects in the interpretation of experimental data obtained 
at high Mach numbers and, in addition, proposes an improved experi- 
mental technique Gtilizing measmements of flow inclination rather than 
the conventional direct measurement of pressures with a probe. Because 
of the critical problems encountered with high-Mach-number measure- 

See p. 3. 
See p. 205. 

i 6 See p. 285. 
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FIGURE 2. -Comparison of the predicted overpressure ratio characteristics from theory 
and experiment. 

ments (e.g., probe design for large shock angle, sting interference, etc.), 
a comparison of these proposals with current testing procedures warrants 
a careful appraisal by the experimenter. 

In summary, the available first-order analytical methods for predicting 
the sonic boom of lifting aircraft are found to be limited in accuracy 
for flight Mach numbers greater than 2. The underlying difficulty appears 
to stem from two sources; namely, deficiencies in the calculation methods 
for the lift distribution and for the boom. Until such time as ongoing 
studies produce improved analytical methods for the M > 2 case, it is 
believed that near-field measurements obtained in the wind tunnel will 
provide the most reliable basis for the prediction of the overpressure char- 
acteristics of general aircraft configurations. However, this observation 
is not to be interpreted to imply that a completely satisfactory level of 
competence has been reached in the status of wind-tunnel testing tech- 
niques that include the technology of scaled model design to accurately 
represent the flight airplane for near-field measurements. Principal 
design problems needing attention here include such details as the 
model shape adjustments required to represent the airplane scaling ef- 
fects, to represent the engine nacelles, and to account for the body 
closure effects and the support sting hardware and attendant interfer- 
ence effects. Finally, real atmosphere effects cannot be neglected in 
studies of design concepts for low boom that depend on nonasymptotic 
effects for the improvements sought. 
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On the Analytical Method of Characteristics 

HELGE NBRSTRUD 
Lockheed-Georgia Co. 

In view of a paper (ref. 1) presented at the Second Conference on Sonic 
Boom Research, it seems appropriate to draw attention to some new, 
but seemingly unnoticed, developments on the subject of analytical 
prediction of nonlinear wave propagation. The paper expresses the need 
for analytical methods for the near-flow region about arbitrary aircraft 
configurations and labels the available theories either too cumbersome 
(e.g., method of characteristics) or too limited in their application. As 
also pointed out in reference 2, the theory of Whitham (ref. 3) exhibits 
limitations of the latter kind. It is my intention to describe briefly an 
analytical method of characteristics that has the potential of yielding 
improvements in both areas of concern. 

There are several reported works that seek to predict more accurately 
the local disturbance field of a given origin (e.g., ref. 4) or the propagation 
pattern of these disturbances (ref. 5) in a more global frame. The major 
difficulties, however, lie in a simultaneous description of both these 
qualities. It is therefore of importance to realize that the theory, which 
subsequently will be discussed, is valid for the entire flow field and is 
exact within its order of approximation. 

The first treatise on the analytical method of characteristics was pub- 
lished by Professor Oswatitsch in 1%2 (ref. 6) and was concerned with 
isentropic wave propagation in two dimensions. Based on similar thoughts 
advanced by Lin (ref. 7), the independent variables chosen by Oswatitsch 
are the characteristic manifold. This insures the correct inclusion of the 
range of influence and the domain of dependence. The method was later 
extended to three independent variables (ref. 8) for which the role of the 
bicharacteristics herame significant in its general formulation (e.g., 
ref. 9). 

Lin’s work has been referred to in reference 10 as a generalization of 
the method of strained coordinates (or the PLK method), which is also 
the technique adopted by Whitham (ref. 3). Hence, an analogy can be 
found between these methods and Oswatitsch’s approach. However, 
the main difference is that the a i ia ly t id  method of characteristics always 
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uses a complete set of characteristic coordinates as the independent 
variables. 

The conceptual steps in the method of Oswatitsch are first to express 
the physical coordinates xi (including the time) in the characteristic space 
(, q, 5 in a series form of, in general, increasing order terms (identified 
with upper indices) of some small-perturbation parameter; i.e., 

Likewise, the dependent variables vj (kinematical and state quantities) 
are written as 

Series (1) and (2) are then substituted in the hyperbolic system under 
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FIGURE 1. -Graphical representation of the analytical method of characteristics of 
Oswatitsch. 
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consideration, and the physical coordinates (now dependent variables) 
are obtained by integration along bicharacteristic lines. The dependent 
variables for given boundary and initial conditions (written in the char- 
acteristic space) are found from the compatibility relations. This pro- 
cedure can now be repeated in an iterative manner until the desired 
degree of accuracy is reached (fig. 1). 

Let the zeroth-order formulation of equations (1) and (2) correspond to 
some undisturbed supersonic flow. The solution given by the linearized 
acoustical (e.g., Ackeret) theory is then equivalent to a first-order ap- 
proximation of the disturbances of the dependent variables (eq. (2)) in 
the undisturbed space. The cumulative effects of these disturbances at 
large distances away from their origin are well known and can be ac- 
counted for, in addition, by considering first-order terms in the coordinate 
relations (eq. (1)). Weak shocks and generalized Prandtl-Meyer expan- 
sions are included in this approximation (e.g., refs. 2, 11, 12), with the 
shocks being represented as overlapping of characteristic surfaces in the 
physical space. Complete agreement with results from Whitham's 
theory can be found by application of a first-order theory as  reported by 
Schneider (ref. 13). Furthermore, his results for conical flow are com- 
pared in figure 2 with the various order approximations of Caughey 
(ref. 5). It is interesting to note the deviation between the two first-order 
solutions, which is due to the difference in the analytical space in which 
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the order of approximation is being considered. Schneider also gives 
higher order solutions for this type of flow and shows these to be in excel- 
lent agreement with Van Dyke's second-order body solution (ref. 15). 

Inhomogeneous effects on the wave propagation through an isothermal 
and polytropic stratified atmosphere, with partial inclusion of aircraft 
acceleration and deceleration, have been studied by Stuff (refs. 16 and 
17, respectively) with a modified version of the method of Oswatitsch. 
He obtains, in particular, explicit relations for the decay properties of 
the shock strength under the assumed atmospheric conditions. (See also 
the written remarks by Stuff in this volume.) ' 

I have tried to summarize some of the pertinent points in connection 
with the analytical method of characteristics. It is felt that this method is 
fundamental to any study of supersonic flow and should not be over- 
looked in the theoretical aspect of the sonic boom problem. Indeed, the 
very fact that the method has apparently not been recognized by NASA 
has ruled out an analytical technique capable of treating three-dimen- 
sional aspects, which also might be useful for boom minimization. 

REFERENCES 

1. HUNTON, L. W.: Current Research in Sonic Boom. Second Conference on Sonic Boom 

2. OSWATITSCH, K.; AND SUN, Y. C.: The Influence of Near-Field Flow on the Sonic 

3. WHITHAM, G. B.: The Flow Pattern of a Supersonic Projectile. Commun. Pure Appl. 

4. WOODWARD, F. A.; HUNTON, L. W.; AND GROSS, A. R.: A New Method for Calculating 
Near and Far  Field Pressure About Arbitrary Configurations. Analytic Methods in 

5. CAUGHEY, D. A.: Second Order Wave Structure in Supersonic Flows. NASA CR-1438, 

6. OSWATITSCH, K.: Das Ausbreiten von Wellen endlicher Amplitude. Z. Flugwiss., vol. 

7. LIN, C. C.: On  a Perturbation Theory Based on the Method of Characteristics. J. Math. 

8. OSWATITSCH, K.: Die Wellenausbreitung in der Ebene bei kleinen Stiirungen. Arch. 

9. LEITER, E.; AND OSWATITSCH, K.: Die Anwendung der  Monge-Gleichung auf Aus- 

10. VAN DYKE, M.: Perturbation Methods in Fluid Mechanics. Academic Press, Inc., 

11. OSWATITSCH, K.: Sonic Boom of Bodies of Revolution. AGARD Conf. Proc. no. 42, 

12. LEITER, E.: Stationare Expansionsstriimungen an raumlichen Uberschallkanten. Acta 

13. SCHNEIDER, W.: Analytische Berechnung achsensymmetrischer Uberschallstriimungen ' 
14. AMES RESEARCH STAFF: Equations, Tables, and Charts for Compressible Flow. NACA 

Research, NASA SP-180,1968. pp. 57+. 

Boom. ICAS Paper no. 70-20,1970. 
1 

1 
Math., vol. 5,1952, pp. 301-348. I 

i 
Aircraft Aerodynamics, NASA SP-228,1970, pp. 215-225. I ' 

I 
I 1%9. 
I 

10,1962, pp. 130-138. I 
Phys.,Cambridge,Mass.,vol. 33 ,1954 ,~~ .  117-134. 

Mech. Stosowanej, vol. 14,1962, pp. 621-637. I 

breitungsvorgange in Gasen. Acta Mech., vol. 8, 1969, pp. 213-234. 
1 

1964, p. loo. I 

1969, pp. 11-1 to 11-9. 

Mech., vol. 8,1%9, pp. 235-254. 

mit Stiissen. DVL-Bericht no. 275,1963. 

Rept. 1135,1953. 
1 

' See p. 429. 



GENERAL REMARKS 425 
15. VAN DYKE, M. D.: Second-Order Slender-Body Theory- Axisymmetric Flow. NASA 

TR R-47,1959. 
16. STUFF, R.: Die Theorie der Knallausbreitung in einer geschichteten Atmosphare. Z. 

Flugwiss.,vol. 17,1969, pp. 156-164. 
17. STUFF, R.: Die vertikale Ausbreitung von ebenen Stosswellen in einer schwerege- 

schichteten Atmosphare mit einem Temperaturgradienten. Z. Flugwiss., vol. 18,1970, 
pp. 80-83. 



Entropy and the Sonic Boom 

BERTRAM PARISER 
Columbia University 

The motivation for the development of supersonic aircraft is to reduce 
the effective passenger and cargo transportation time over long distances. 
However, because of the sonic boom (a pressure disturbance of 1 to 
4 lb/ft' on the ground), the future of the supersonic transport may be 
limited to flight over water. It is therefore necessary to remove this 
severe travel restriction by finding a way to reduce the sonic boom. 
Research, considering the entropy of the entire system, should be con- 
ducted in this area. 

Entropy is a measure of the amount of disorder of a system. The second 
law of thermodynamics states that the entropy tends to be an increasing 
function, that a system tends toward more disorder. The system of energy 
associated with supersonic flight is shown below. Because the energy 
distribution is large, this system is in a state of high entropy or disorder. 
The second law of thermodynamics also states that work must be done 
to decrease the entropy. Therefore, to reduce the sonic boom and its 
energy contribution, work must be done on the system. 

Energy System of the SST 

Kinetic energy of the aircraft 
Potential energy of the aircraft 
Energy associated with shock dissipation: 

Bow shock 
Tail shock 
Other shock phenomena 

Heat 
Light 
Sound 

Turbulence 
Drag 

Energy dissipation from the engines: 

Energy associated with aerodynamic dissipation: 

Atomic and molecular energy 

The conventional approach to the sonic boom problem is to obtain a 
pressure signature by use of a Whitham F-function. Various valid and 
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well-documented proposals to minimize the pressure signature have been 
presented at this conference; e.g., a proposal to minimize the sonic boom 
through the introduction of a thermal fin, a proposal to introduce aero- 
dynamic drag on a wing section of the aircraft, and a proposal to limit 
the cross-sectional area of the aircraft to several feet. These alternatives 
supply the work needed to decrease the entropy as the sonic boom is 
decreased. However, this work results in higher fuel consumption or 
slower airspeeds. In the design criteria of the supersonic transport, 
perhaps the entropy of the entire system should be considered before 
lengthy computer calculations are performed to minimize one part of that 
system, the sonic boom. 

Finally, I strongly recommend using laser or microwave radiation to 
examine shock structure. Laser systems can be designed to measure 
changes in the index of refraction of air caused by the sonic boom. 
This diagnostic technique does not perturb the aerodynamic flow field. 
Consequently, laser systems offer a great advantage over static probes 
in the measurement of the sonic boom. 



Some Recent Sonic Boom Research in Germany 

ROLAND STUFF 
Deutsche Forschungs- und Versuchsanstalt fur  Luft- und Raumfahrt 
(DFVLR ) 

In the Institute for Theoretical Gasdynamics of the DFVLR, several 
problems concerning sonic boom have been studied by means of an ana- 
lytical characteristic method of Oswatitsch (refs. l to 8). Some recent 
work has been done with regard to sonic boom wind-tunnel measure- 
ments on an annular wing (ref. 9), to a delta wing with supersonic leading 
edges at an angle of attack (ref. lo), and to the influence of polytropic 
atmospheric stratification (ref. 11). 

CLOSED-FORM SOLUTION FOR THE SONIC BOOM IN A POLVTROPIC ATMOSPHERE 

Because the analytical solution describing the wave propagation in a 
polytropic atmosphere serves as the initial solution to the method of 
strained coordinates, it must be known previously. For a spherical 
source located at P (fig. l), this solution is given by 

with 

where U I N  is the first-order perturbated velocity in the normal direction 
to the wavefront. C O ( Z O )  and pO(z0) are the local sound velocity and 
the local static pressure, respectively, and cop and pop the corresponding 
quantities at flight altitude. F corresponds to the retarded potential of 
a homogeneous atmosphere, and Ro is the instantaneous radius of the 
wavefront (fig. 1). The stretched coordinates are obtained by integrating 
along the bicharacteristics p and v. 

1 429 
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Wavef ront 
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R, (radius) 
1 
ZO 

N i  

FIGURE 1.- Spherical source in a polytropic atmosphere. I 
/.L = fo + so 
v = f o - 3 0  

with 

and 

where S O  is the ray path, t o  the real time, and 1 the body length. 
The aircraft’s flight is at supersonic velocities that are accelerated 1 
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or decelerated on a straight line as  shown on figure 2. The flightpath 
lies in a vertical plane denoted by xo and zo and is inclined by the angle 
6 to the horizontal xwaxis. The perturbations propagating along ray 
so will be observed. The vertical plane containing the ray makes a hori- 
zontal angle 8 with the xo-axes. The propagation below the aircraft is 
indicated by 8= 09 Now replacing the flight vehicle by a distribution of 
sources and sinks (eqs. (1) and (2)), the perturbated pressure p1 is ob- 
tained by 

GENERAL REMARKS 

(7) -_ KM' d:F1(2U*)B'(p) 
Po 

with K as ratio of the specific heats, M as the Mach number related to 
cop, F ,  ( 2 u M )  as the Whitham function (eq. (8)), and '3' ( p )  as the distance 
function defined by equation (9) 

F L U H E  2.-Fiightpath and ray. 
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I I 

I 
FIGURE 3. -Curved Right. I 

I 

M S  ( cos2 5 cos? 8 + sin? 5) - 1 

( M 2 -  1) -j sinh IApI cosh lApl 
1 cop0 

I 
I x (M2(cos2 5 cos2 8+ sin' 5) - 1 

- ([M cos 8 cos &M'( cos? 5 cos? 8+ sin? 5) - 1 + M sin < ] A  I 
- 1 1 2  

tanh I A p l )  (9) 

The constant A follows from the sound speed gradient dcoldzo, and the 
constant Bt ,  from the real acceleration b. The denominator in equation 
(9) is zero when the waves form a cusp. However, this singularity is 
integrable, and the shocks behind the cusp can be calculated. For 8= Oo 
and dco/dzo=O, the formulas for the isothermal atmosphere (ref. 12) , 

~ 



GENERAL REMARKS 433 
can be obtained. Because the flight vehicle is replaced by a distribution 
of sources and sinks, further flight maneuvers can be taken into account; 
e.g., for curved flight (fig. 3)  we obtain 

M Z  cos2e-i 

(MZ- 1 )  -sinh lApl cosh lApl 1 
A 

1 
M M cos 8 V M 2  cos2 8- 1 A +- [Bt + tan OB,] 

-1P2 x 2 1 tanh IApI) 

with 

Here B ,  is the dimensionless angular acceleration. Defining 

the p, v correspondence is given by the shock wave solution 

Io’ F,  (2vM)  & 

- M2 E F; (2VM)  

g ( p )  = 
K + 1  

8 

This formula is valid for the bow shock from the tip of the body up to 
infinity. The above equation can be calculated by a simple iteration using 
a small computer within 35 steps in general. Defining the characteristic 
v* running into the shock at a distance p 

and replacing the Whitham F,-function in equation (7) by 
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an explicit formula is obtained, Vn being the neutral Mach line for which 
F ,  is zero. In figure 4 values are plotted for steady fight at M = 1 . 5  
below the aircraft at 8=0" and 5-0". A p  is the pressure jump in the 
bow shock. 

INFLUENCE OF NEAR-FIELD FLOW ON THE SONIC BOOM 

Oswatitsch and Sun (ref. 10) calculated the sonic boom due to lift 
in the vertical plane of symmetry below a delta wing with supersonic 
leading edges and constant pressure distribution. They found that the 
bow shock is weakened at the distance ya by a plane Prandtl-Meyer 
expansion centered in the trailing edge. For altitudes greater than yay 
the equivalent body of revolution cannot be applied. As is known, plane 
Prandtl-Meyer expansions do not change theIr intensity along the 
characteristics. This affects, for example, the differential equation for 
the bow shock in such a way that one term is weakened as  (q)-1 and 
not as ( r ) ) - 3 / * ,  as one would obtain by applying the equivalent body 
of revolution. The shock terminates at a finite distance from the wing 
given by r)  = 2e2y,. 

APPROXIMATE METHOD TO CALCULATE THE SUPERSONIC FLOW AROUND AN ANNULAR 
WING 

Wind-tunnel sonic boom signatures are always near-field signatures. 
The problem is to extrapolate the near-field signature to the far field. 
Rues calculated an annular wing in reference (9). He related the signa- 
ture at the surface of an annular wing to a body at the axis by an integral 
equation of the Abel type. Then he calculated the inner and outer region 
of the surrounding supersonic flow. The author gives satisfying and ac- 
curate results if the radius of the wing is twice the length of the profile. 
Relating now the signature of the annular wing to a sonic boom wind- 
tunnel signature, the far field can be calculated. 
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Pressure Signature Estimation at High Mach Numbers I FRANK A. WOODWARD 
Aerophysics Research Corp. 

t 

Recent experimental data indicate that the Whitham theory fails to 
give acceptable estimates of near-field pressure signatures at high Mach 
numbers. This failure of the theory is particularly noticeable for non- 
slender configurations; for example, bodies that occupy a substantial 
fraction of the Mach cone from the nose and for supersonic leading edge 
wings at incidence. In these examples, the theory tends to underestimate 
the magnitude of the front shock wave and the rate of expansion of the 
pressure between the front and rear shocks. These effects are most pro- 
nounced in the extreme near field; that is, within five body lengths from 
the configuration and for Mach numbers greater than 2. 

The principal reason for the failure of the Whitham theory to correctly 
predict the pressure signatures in the near field is the underlying assump- 
tion that the configuration is sufficiently slender that it can be repre- 
sented by a line source distribution with strength proportional to the 
area of the equivalent body of revolution in each azimuthal plane. This 
'slender-body theory assumption immediately implies a three-dimensional 
wave pattern in which the incremental pressure varies inversely as the 
square root of the distance from the body axis. On a given characteristic 
line originating at x = xo on the body axis, 

(1) 

where F ( - )  is Whitham's F-function, which depends only on the area 
distribution of the equivalent body. Using this approximate form for the 
pressure distribution in the field, the equations of the characteristic 
ines are given by 

yM2u= yM2 - FbO) 
P 

y + l  M4 
x = x o  + fir + - 2 - 4 x 0 ,  r )  dr 

=xo+/3r---  y + l  M 4  F(X") \r, vii 
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If the body is not slender but still lies within the Mach cone from the 
nose, linear theory may be applied to calculate the incremental pressure 
at any point in the field. In this case, the axial perturbation velocity u j 
is a more complex function of a and r than given by equation (1) and, in 1 

1 and r except in the limit of very small values of the ratio xolr. In the linear ' 
theory approximation, the pressure distribution along a given charac- ! 
teristic line follows a smooth continuous variation from the surface pres- 1 

sure value to the Whitham value at large radial distance. Most impor- 1 

tantly, the linear theory pressure increment is always less than that , 
given by equation (1) for all values of r. 'rhus, the Mach line displacement , 
is always less than >hat predicted by the Whitham theory, with the 
greatest differences occurring in the extreme near field in substantial 
agreement with the experimental evidence. 

To compare linear theory pressure signatures with the Whitham theory, 
it is necessary to evaluate the integrals appearing in equation (2) for 
each of the singularity distributions used in the aerodynamic represen- 1 
tation. In the present study, performed under contract for NASA Ames 
Research Center and reported in reference 1, the body is represented 
by a system of line sources and doublets located along the configuration 
axis, and the wing is represented by source and vortex distributions 
located on panels in the plane of the wing. Interference effects between 
the wing and body are accounted for by additional vortex panels on the 
body surface aft of the wing leading edge. 

It is found that the body line source and doublet distributions rapidly 
approach the asymptotic form of the Whitham theory. The planar 
source and vortex distributions used to represent the wing converge 1 
less rapidly and show substantial differences with the Whitham theory j 
in the near field. Considerable difficulty has been experienced in inter- 
preting the new theoretical results, particularly for low-aspect-ratio 
wings with supersonic leading edges. The interaction of three-dimen- 
sional flow regions from the wingtips with the two-dimensional flow region 
behind the supersonic leading edge is not treated in a satisfactory manner 
by the present computer program and seriously limits the application 
of the method in general. In spite of this limitation, two examples are 
presented here to illustrate the effect of Mach number on the near-field I 
pressure signatures of a cone-cylinder and delta-wing-body combination. 

In the first example (fig. I), the pressure signatures calculated for a 
7.5" half-angle cone-cylinder model mounted on a tapered sting are com- 
pared with experimental data for Mach numbers between 2 and 5.5. 
The pressure signatures are calculated by linear theory and by the asymp- 
totic or Whitham theory using the same source distribution to represent 
the body in each case for a given Mach number. Two distinct wave pat- 
terns are apparent in the theoretical signatures. The initial wave pattern1 

particular, cannot be expressed simply as a product of a function of xo I 

' 
i I 

. 
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FIGURE 1 .  - GtTr-rt of Mach number on the zear-fie!d pressare sigr.a:i;ics af a cone-cy!inder 
combination. 

is produced by the cone and the corner expansion fan and forms an 
incomplete N-wave followed by a gradual recompression associated 
with the cylindrical section ahead of the base. In this region, the linear 
theory provides a better estimate of the magnitude of the front shock 
wave and the rate of flow expansion immediateiy behind it than the 
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FIGURE 2.- Effect of Mach number on the near-field pressure signatures of a delta-wing-body , 
combination. 
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asymptotic theory over the entire Mach number range. The rounding of 
the experimental pressure signature is believed to be due to model vibra- 
tion. The higher the Mach number, the broader the rounded signature 
hecomes hecause of the extremely oblique angle the front shock makes 
with the pressure probe. It is apparent from this comparison that either 
theoretical method would be acceptable for predicting the pressure 
signature up to M =  3.0 but that the linear theory gives a definite improve- I 

1 ment at the higher Mach numbers. 



GENERAL REMARKS 441 
'he second wave pattern consists of an expansion fan from the base 
he cylinder followed by a shock wave produced by the tapered sting. 
: base of the body is represented by a 12" cone frustum ahead of the 
Ig and generates a substantial linear pressure gradient followed by a 
mg shock wave in all the theoretical pressure signatures. This flow 
tern is not observed experimentally except at the lowest Mach num- 
s and suggests an alternate base representation having less severe 
iansion may be more appropriate at the higher Mach numbers. 
'he second example (fig. 2) compares the pressure signatures calcu- 
:d at zero lift for a 59" sweep delta-wing-body combination with ex- 
imental data at two Mach numbers. The wing has a 5-percent-thick 
lble-wedge section and is centrally mounted on the body. The wave 
tern produced by the long slender parabolic nose is effectively sepa- 
:d from the wing wave pattern in these examples, which helps simplify 
interpretation of the results. 

It M =  1.7, the wing has a subsonic leading edge. The pressure sig- 
ure is calculated only by the asymptotic form of the theory at this 
ch number and can be seen to agree well with the experimental 
qts. At M = 2 . 7 ,  the wing has a supersonic leading edge, and the 
mptotic theory now falls well below the experimental data in that 
t of the signature generated by the wing. The linear theory calculation 
this configuration neglects body panel interference effects but shows 
ireciable improvement in correlation with experiments in the wing 
ion. Further development of the computer program is required to 
ude all near-field effects in the pressure signatures of wing-body 
ibinations at high Mach numbers, but these examples illustrate the 
zntial improvement of the linear theory approach. 
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